多元时间序列 | Matlab遗传算法优化深度置信网络(GA-DBN)多变量时间序列预测

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 多元时间序列 | Matlab遗传算法优化深度置信网络(GA-DBN)多变量时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

基于遗传算法优化深度置信网络GA-DBN实现数据回归多输出预测的方法是非常有前景和潜力的。遗传算法作为一种优化算法,能够通过模拟生物进化的过程来搜索最优解,而深度置信网络则是一种强大的机器学习模型,能够从大量的数据中学习并提取特征。将这两种方法结合起来,可以有效地解决数据回归问题,并实现多输出预测。

在实际应用中,数据回归多输出预测的需求日益增长。例如,在金融领域,我们需要根据历史数据来预测未来的股票价格、汇率走势等多个指标。而传统的回归模型往往只能处理单个输出,难以满足实际需求。因此,采用基于遗传算法优化深度置信网络的方法,可以更好地解决这一问题。

遗传算法的优势在于它能够通过自然选择、交叉和变异等操作来不断优化网络的结构和参数,从而提高模型的性能。同时,深度置信网络的优势在于它能够通过多层的非线性变换来逐层抽取数据的高级特征,从而更好地捕捉数据之间的复杂关系。因此,将遗传算法与深度置信网络相结合,可以进一步提高模型的预测准确性和泛化能力。

当然,基于遗传算法优化深度置信网络的方法也存在一些挑战和限制。首先,遗传算法的运行时间较长,需要较大的计算资源和时间成本。其次,深度置信网络的训练过程较为复杂,需要大量的训练数据和调参工作。此外,模型的解释性和可解释性也是一个重要的问题,特别是在一些对模型解释性要求较高的领域。

总的来说,基于遗传算法优化深度置信网络的方法在数据回归多输出预测方面具有很大的潜力。通过充分利用遗传算法和深度置信网络的优势,我们可以更好地解决实际问题,并取得更好的预测效果。希望未来能够有更多的研究和实践工作,进一步推动这一方法的发展和应用。

核心代码

function ret=Decode(lenchrom,bound,code,opts)% 本函数对染色体进行解码% lenchrom   input : 染色体长度% bound      input : 变量取值范围% code       input :编码值% opts       input : 解码方法标签% ret        output: 染色体的解码值switch opts    case 'binary' % binary coding        for i=length(lenchrom):-1:1        data(i)=bitand(code,2^lenchrom(i)-1);  %并低十位,然后将低十位转换成十进制数存在data(i)里面        code=(code-data(i))/(2^lenchrom(i));   %低十位清零,然后右移十位        end        ret=bound(:,1)'+data./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))';  %分段解码,以实数向量的形式存入ret中            case 'grey'   % grey coding        for i=sum(lenchrom):-1:2            code=bitset(code,i-1,bitxor(bitget(code,i),bitget(code,i-1)));        end        for i=length(lenchrom):-1:1        data(i)=bitand(code,2^lenchrom(i)-1);        code=(code-data(i))/(2^lenchrom(i));        end        ret=bound(:,1)'+data./(2.^lenchrom-1).*(bound(:,2)-bound(:,1))'; %分段解码,以实数向量的形式存入ret中            case 'float'  % float coding        ret=code; %解码结果就是编码结果(实数向量),存入ret中end

⛄ 运行结果

⛄ 参考文献

[1] 谭小钰,刘芳,马俊杰,等.基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J].太阳能学报, 2021, 42(10):7.

[2] 李妮.基于深度信念网络的时间序列预测研究[D].西安理工大学,2019.

[3] 梁彩霞,高赵亮.基于相似日和GA-DBN神经网络的光伏发电短期功率预测[J].电气应用, 2019, 38(3):6.DOI:CNKI:SUN:DGJZ.0.2019-03-020.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关文章
|
2月前
|
机器学习/深度学习 数据可视化 网络架构
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
PINNs训练难因多目标优化易失衡。通过设计硬约束网络架构,将初始与边界条件内嵌于模型输出,可自动满足约束,仅需优化方程残差,简化训练过程,提升稳定性与精度,适用于气候、生物医学等高要求仿真场景。
299 4
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
|
2月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
287 5
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
124 0
|
12月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
265 17
|
12月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
226 10
|
12月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
235 10
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章