Flink之处理函数 (ProcessFunction)1

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink之处理函数 (ProcessFunction)

之前所介绍的流处理 API,无论是基本的转换、聚合,还是更为复杂的窗口操作,其实都是基于 DataStream 进行转换的;所以可以统称为 DataStream API,这也是 Flink 编程的核心。而我们知道,为了让代码有更强大的表现力和易用性,Flink 本身提供了多层 API,DataStream API 只是中间的一环

de25db1fb3fa48dbb479f3152648cb87.png

在更底层,我们可以不定义任何具体的算子(比如 map,filter,或者 window),而只是提炼出一个统一的“处理”(process)操作——它是所有转换算子的一个概括性的表达,可以自定义处理逻辑,所以这一层接口就被叫作“处理函数”(process function)。


在处理函数中,我们直面的就是数据流中最基本的元素:数据事件(event)、状态(state)以及时间(time)。这就相当于对流有了完全的控制权。处理函数比较抽象,没有具体的操作,所以对于一些常见的简单应用(比如求和、开窗口)会显得有些麻烦;不过正是因为它不限定具体做什么,所以理论上我们可以做任何事情,实现所有需求。所以可以说,处理函数是我们进行 Flink 编程的“大招”,轻易不用,一旦放出来必然会扫平一切。

基本处理函数(ProcessFunction)

处理函数主要是定义数据流的转换操作,所以也可以把它归到转换算子中。我们知道在Flink 中几乎所有转换算子都提供了对应的函数类接口,处理函数也不例外;它所对应的函数类,就叫作 ProcessFunction。


处理函数的功能和使用

我们之前学习的转换算子,一般只是针对某种具体操作来定义的,能够拿到的信息比较有限。比如 map 算子,我们实现的 MapFunction 中,只能获取到当前的数据,定义它转换之后的形式;而像窗口聚合这样的复杂操作,AggregateFunction 中除数据外,还可以获取到当前的状态(以累加器 Accumulator 形式出现)。另外我们还介绍过富函数类,比如 RichMapFunction,它提供了获取运行时上下文的方法 getRuntimeContext(),可以拿到状态,还有并行度、任务名称之类的运行时信息。


但是无论那种算子,如果我们想要访问事件的时间戳,或者当前的水位线信息,都是完全做不到的。在定义生成规则之后,水位线会源源不断地产生,像数据一样在任务间流动,可我们却不能像数据一样去处理它;跟时间相关的操作,目前我们只会用窗口来处理。而在很多应用需求中,要求我们对时间有更精细的控制,需要能够获取水位线,甚至要“把控时间”、定义什么时候做什么事,这就不是基本的时间窗口能够实现的了。


于是必须祭出大招——处理函数(ProcessFunction)了。处理函数提供了一个“定时服务”(TimerService),我们可以通过它访问流中的事件(event)、时间戳(timestamp)、水位线(watermark),甚至可以注册“定时事件”。而且处理函数继承了 AbstractRichFunction 抽象类,所以拥有富函数类的所有特性,同样可以访问状态(state)和其他运行时信息。此外,处理函数还可以直接将数据输出到侧输出流(side output)中。所以,处理函数是最为灵活的处理方法,可以实现各种自定义的业务逻辑;同时也是整个 DataStream API 的底层基础。

stream.process(new MyProcessFunction())

这里 ProcessFunction 不是接口,而是一个抽象类,继承了 AbstractRichFunction;MyProcessFunction 是它的一个具体实现。所以所有的处理函数,都是富函数(RichFunction),富函数可以调用的东西这里同样都可以调用。

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
public class ProcessFunctionExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy.<Event>forMonotonousTimestamps().withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                                    @Override
                                    public long extractTimestamp(Event event, long l) {
                                        return event.timestamp;
                                    }
                                })
                )
                .process(new ProcessFunction<Event, String>() {
                    @Override
                    public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
                        if (value.user.equals("Mary")) {
                            out.collect(value.user);
                        } else if (value.user.equals("Bob")) {
                            out.collect(value.user);
                            out.collect(value.user);
                        }
                        System.out.println(ctx.timerService().currentWatermark());
                    }
                })
                .print();
        env.execute();
    }
}

这里我们在 ProcessFunction 中重写了.processElement()方法,自定义了一种处理逻辑:当数据的 user 为“Mary”时,将其输出一次;而如果为“Bob”时,将 user 输出两次。这里的输 出 , 是 通 过 调 用 out.collect() 来实现的。另外我们还可以调用ctx.timerService().currentWatermark() 来 获 取 当 前 的 水 位 线 打 印 输 出 。 所 以 可 以 看 到 ,ProcessFunction 函数有点像 FlatMapFunction 的升级版。可以实现 Map、Filter、FlatMap 的所有功能。很明显,处理函数非常强大,能够做很多之前做不到的事情。

ProcessFunction 解析

在源码中我们可以看到,抽象类 ProcessFunction 继承了 AbstractRichFunction,有两个泛型类型参数:I 表示 Input,也就是输入的数据类型;O 表示 Output,也就是处理完成之后输出的数据类型。


内部单独定义了两个方法:一个是必须要实现的抽象方法.processElement();另一个是非抽象方法.onTimer()。

public abstract class ProcessFunction<I, O> extends AbstractRichFunction {
...
public abstract void processElement(I value, Context ctx, Collector<O> out)throws Exception;
public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception {}
...
}

1.抽象方法.processElement()


用于“处理元素”,定义了处理的核心逻辑。这个方法对于流中的每个元素都会调用一次,参数包括三个:输入数据值 value,上下文 ctx,以及“收集器”(Collector)out。方法没有返回值,处理之后的输出数据是通过收集器 out 来定义的。


value:当前流中的输入元素,也就是正在处理的数据,类型与流中数据类型一致。


ctx:类型是 ProcessFunction 中定义的内部抽象类 Context,表示当前运行的上下文,可以获取到当前的时间戳,并提供了用于查询时间和注册定时器的“定时服务”(TimerService),以及可以将数据发送到“侧输出流”(side output)的方法.output()。Context 抽象类定义如下:

public abstract class Context {
public abstract Long timestamp();
public abstract TimerService timerService();
public abstract <X> void output(OutputTag<X> outputTag, X value);
}

out:“收集器”(类型为 Collector),用于返回输出数据。使用方式与 flatMap算子中的收集器完全一样,直接调用 out.collect()方法就可以向下游发出一个数据。这个方法可以多次调用,也可以不调用。


通过几个参数的分析不难发现,ProcessFunction 可以轻松实现 flatMap 这样的基本转换功能(当然 map、filter 更不在话下);而通过富函数提供的获取上下文方法.getRuntimeContext(),也可以自定义状态(state)进行处理,这也就能实现聚合操作的功能了。


2.非抽象方法.onTimer()


用于定义定时触发的操作,这是一个非常强大、也非常有趣的功能。这个方法只有在注册好的定时器触发的时候才会调用,而定时器是通过“定时服务”TimerService 来注册的。打个比方,注册定时器(timer)就是设了一个闹钟,到了设定时间就会响;而.onTimer()中定义的,就是闹钟响的时候要做的事。所以它本质上是一个基于时间的“回调”(callback)方法,通过时间的进展来触发;在事件时间语义下就是由水位线(watermark)来触发了。


与.processElement()类似,定时方法.onTimer()也有三个参数:时间戳(timestamp),上下文(ctx),以及收集器(out)。这里的 timestamp 是指设定好的触发时间,事件时间语义下当然就是水位线了。另外这里同样有上下文和收集器,所以也可以调用定时服务(TimerService),以及任意输出处理之后的数据。


既然有.onTimer()方法做定时触发,我们用 ProcessFunction 也可以自定义数据按照时间分组、定时触发计算输出结果;这其实就实现了窗口(window)的功能。所以说 ProcessFunction是真正意义上的终极奥义,用它可以实现一切功能。


我们也可以看到,处理函数都是基于事件触发的。水位线就如同插入流中的一条数据一样;只不过处理真正的数据事件调用的是.processElement()方法,而处理水位线事件调用的是.onTimer()。


这里需要注意的是,上面的.onTimer()方法只是定时器触发时的操作,而定时器(timer)真正的设置需要用到上下文 ctx 中的定时服务。在 Flink 中,只有“按键分区流”KeyedStream才支持设置定时器的操作,所以之前的代码中我们并没有使用定时器。所以基于不同类型的流,可以使用不同的处理函数,它们之间还是有一些微小的区别的。接下来我们就介绍一下处理函数的分类。

处理函数的分类

Flink 中的处理函数其实是一个大家族,ProcessFunction 只是其中一员。

Flink 中的处理函数其实是一个大家族,ProcessFunction 只是其中一员。


我们知道,DataStream 在调用一些转换方法之后,有可能生成新的流类型;例如调用.keyBy()之后得到 KeyedStream,进而再调用.window()之后得到 WindowedStream。对于不同类型的流,其实都可以直接调用.process()方法进行自定义处理,这时传入的参数就都叫作处理函数。当然,它们尽管本质相同,都是可以访问状态和时间信息的底层 API,可彼此之间也会有所差异。


Flink 提供了 8 个不同的处理函数:


(1)ProcessFunction

最基本的处理函数,基于 DataStream 直接调用.process()时作为参数传入。

(2)KeyedProcessFunction

对流按键分区后的处理函数,基于 KeyedStream 调用.process()时作为参数传入。要想使用定时器,比如基于 KeyedStream。

(3)ProcessWindowFunction

开窗之后的处理函数,也是全窗口函数的代表。基于 WindowedStream 调用.process()时作

为参数传入。

(4)ProcessAllWindowFunction

同样是开窗之后的处理函数,基于 AllWindowedStream 调用.process()时作为参数传入。

(5)CoProcessFunction

合并(connect)两条流之后的处理函数,基于 ConnectedStreams 调用.process()时作为参

数传入。关于流的连接合并操作

(6)ProcessJoinFunction

间隔连接(interval join)两条流之后的处理函数,基于 IntervalJoined 调用.process()时作为

参数传入。

(7)BroadcastProcessFunction

广播连接流处理函数,基于 BroadcastConnectedStream 调用.process()时作为参数传入。这里的“广播连接流”BroadcastConnectedStream,是一个未 keyBy 的普通 DataStream 与一个广播流(BroadcastStream)做连接(conncet)之后的产物。

(8)KeyedBroadcastProcessFunction

按键分区的广播连接流处理函数,同样是基于 BroadcastConnectedStream 调用.process()时作为参数传入。与 BroadcastProcessFunction 不同的是,这时的广播连接流,是一个 KeyedStream与广播流(BroadcastStream)做连接之后的产物。


接下来,我们就对 KeyedProcessFunction 和 ProcessWindowFunction 的具体用法展开详细说明。按键

按键分区处理函数(KeyedProcessFunction)

在 Flink 程序中,为了实现数据的聚合统计,或者开窗计算之类的功能,我们一般都要先用 keyBy 算子对数据流进行“按键分区”,得到一个 KeyedStream。也就是指定一个键(key),按照它的哈希值(hash code)将数据分成不同的“组”,然后分配到不同的并行子任务上执行计算;这相当于做了一个逻辑分流的操作,从而可以充分利用并行计算的优势实时处理海量数据。


另外我们在上节中也提到,只有在 KeyedStream 中才支持使用 TimerService 设置定时器的操作。所以一般情况下,我们都是先做了 keyBy 分区之后,再去定义处理操作;代码中更加常见的处理函数是 KeyedProcessFunction,最基本的 ProcessFunction 反而出镜率没那么高。


定时器(Timer)和定时服务(TimerService)

KeyedProcessFunction 的一个特色,就是可以灵活地使用定时器。


定时器(timers)是处理函数中进行时间相关操作的主要机制。在.onTimer()方法中可以实现定时处理的逻辑,而它能触发的前提,就是之前曾经注册过定时器、并且现在已经到了触发时间。注册定时器的功能,是通过上下文中提供的“定时服务”(TimerService)来实现的。


定时服务与当前运行的环境有关。前面已经介绍过,ProcessFunction 的上下文(Context)中提供了.timerService()方法,可以直接返回一个 TimerService 对象:

public abstract TimerService timerService();

TimerService 是 Flink 关于时间和定时器的基础服务接口,包含以下六个方法:

// 获取当前的处理时间
long currentProcessingTime();
// 获取当前的水位线(事件时间)
long currentWatermark();
// 注册处理时间定时器,当处理时间超过 time 时触发
void registerProcessingTimeTimer(long time);
// 注册事件时间定时器,当水位线超过 time 时触发
void registerEventTimeTimer(long time);
// 删除触发时间为 time 的处理时间定时器
void deleteProcessingTimeTimer(long time);
// 删除触发时间为 time 的处理时间定时器
void deleteEventTimeTimer(long time);

六个方法可以分成两大类:基于处理时间和基于事件时间。而对应的操作主要有三个:获取当前时间,注册定时器,以及删除定时器。需要注意,尽管处理函数中都可以直接访问TimerService,不过只有基于 KeyedStream 的处理函数,才能去调用注册和删除定时器的方法;未作按键分区的 DataStream 不支持定时器操作,只能获取当前时间。


对于处理时间和事件时间这两种类型的定时器,TimerService 内部会用一个优先队列将它们的时间戳(timestamp)保存起来,排队等待执行。可以认为,定时器其实是 KeyedStream上处理算子的一个状态,它以时间戳作为区分。所以 TimerService 会以键(key)和时间戳为标准,对定时器进行去重;也就是说对于每个 key 和时间戳,最多只有一个定时器,如果注册了多次,onTimer()方法也将只被调用一次。这样一来,我们在代码中就方便了很多,可以肆无忌惮地对一个 key 注册定时器,而不用担心重复定义——因为一个时间戳上的定时器只会触发一次。


基于 KeyedStream 注册定时器时,会传入一个定时器触发的时间戳,这个时间戳的定时器对于每个 key 都是有效的。这样,我们的代码并不需要做额外的处理,底层就可以直接对不同key 进行独立的处理操作了。


利用这个特性,有时我们可以故意降低时间戳的精度,来减少定时器的数量,从而提高处理性能。比如我们可以在设置定时器时只保留整秒数,那么定时器的触发频率就是最多 1 秒一次。

long coalescedTime = time / 1000 * 1000;
ctx.timerService().registerProcessingTimeTimer(coalescedTime);

这里注意定时器的时间戳必须是毫秒数,所以我们得到整秒之后还要乘以 1000。定时器默认的区分精度是毫秒。


另外 Flink 对.onTimer()和.processElement()方法是同步调用的(synchronous),所以也不会出现状态的并发修改。


Flink 的定时器同样具有容错性,它和状态一起都会被保存到一致性检查点(checkpoint)中。当发生故障时,Flink 会重启并读取检查点中的状态,恢复定时器。如果是处理时间的定时器,有可能会出现已经“过期”的情况,这时它们会在重启时被立刻触发。

KeyedProcessFunction 的使用

KeyedProcessFunction 可以说是处理函数中的“嫡系部队”,可以认为是 ProcessFunction 的一个扩展。我们只要基于 keyBy 之后的 KeyedStream,直接调用.process()方法,这时需要传入的参数就是 KeyedProcessFunction 的实现类。

stream.keyBy( t -> t.f0 )
  .process(new MyKeyedProcessFunction())

类似地,KeyedProcessFunction 也是继承自 AbstractRichFunction 的一个抽象类,源码中定义如下:

public abstract class KeyedProcessFunction<K, I, O> extends AbstractRichFunction {
  ...
  public abstract void processElement(I value, Context ctx, Collector<O> out) throws Exception;
  public void onTimer(long timestamp, OnTimerContext ctx, Collector<O> out) throws Exception {}
  public abstract class Context {...}
  ...
}

可以看到与 ProcessFunction 的定义几乎完全一样,区别只是在于类型参数多了一个 K,这是当前按键分区的 key 的类型。同样地,我们必须实现一个.processElement()抽象方法,用来处理流中的每一个数据;另外还有一个非抽象方法.onTimer(),用来定义定时器触发时的回调操作。由于定时器只能在 KeyedStream 上使用,所以到了 KeyedProcessFunction 这里,我们才真正对时间有了精细的控制,定时方法.onTimer()才真正派上了用场。

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
public class ProcessingTimeTimerTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        // 处理时间语义,不需要分配时间戳和 watermark
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource());
        // 要用定时器,必须基于 KeyedStream
        stream.keyBy(data -> true)
                .process(new KeyedProcessFunction<Boolean, Event, String>() {
                    @Override
                    public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
                        Long currTs = ctx.timerService().currentProcessingTime();
                        out.collect("数据到达,到达时间:" + new Timestamp(currTs));
                        // 注册一个 10 秒后的定时器
                        ctx.timerService().registerProcessingTimeTimer(currTs + 10 * 1000L);
                    }
                    @Override
                    public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
                        out.collect("定时器触发,触发时间:" + new Timestamp(timestamp));
                    }
                }).print();
        env.execute();
    }
}

在上面的代码中,由于定时器只能在 KeyedStream 上使用,所以先要进行 keyBy;这里的.keyBy(data -> true)是将所有数据的 key 都指定为了 true,其实就是所有数据拥有相同的 key,会分配到同一个分区。


之后我们自定义了一个 KeyedProcessFunction,其中.processElement()方法是每来一个数据都会调用一次,主要是定义了一个 10 秒之后的定时器;而.onTimer()方法则会在定时器触发时调用。所以我们会看到,程序运行后先在控制台输出“数据到达”的信息,等待 10 秒之后,又会输出“定时器触发”的信息,打印出的时间间隔正是 10 秒。


当然,上面的例子是处理时间的定时器,所以我们是真的需要等待 10 秒才会看到结果。事件时间语义下,又会有什么不同呢?我们可以对上面的代码略作修改,做一个测试:

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector;
public class EventTimeTimerTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        SingleOutputStreamOperator<Event> stream = env.addSource(new CustomSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        // 基于 KeyedStream 定义事件时间定时器
        stream.keyBy(data -> true)
                .process(new KeyedProcessFunction<Boolean, Event, String>() {
                    @Override
                    public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
                        out.collect("数据到达,时间戳为:" + ctx.timestamp());
                        out.collect(" 数据到达,水位线为: " + ctx.timerService().currentWatermark() + "\n -------分割线-------");
                        // 注册一个 10 秒后的定时器
                        ctx.timerService().registerEventTimeTimer(ctx.timestamp() + 10 * 1000L);
                    }
                    @Override
                    public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
                        out.collect("定时器触发,触发时间:" + timestamp);
                    }
                })
                .print();
        env.execute();
    }
    // 自定义测试数据源
    public static class CustomSource implements SourceFunction<Event> {
        @Override
        public void run(SourceContext<Event> ctx) throws Exception {
            // 直接发出测试数据
            ctx.collect(new Event("Mary", "./home", 1000L));
            // 为了更加明显,中间停顿 5 秒钟
            Thread.sleep(5000L);
            // 发出 10 秒后的数据
            ctx.collect(new Event("Mary", "./home", 11000L));
            Thread.sleep(5000L);
            // 发出 10 秒+1ms 后的数据
            ctx.collect(new Event("Alice", "./cart", 11001L));
            Thread.sleep(5000L);
        }
        @Override
        public void cancel() {
        }
    }
}

由于是事件时间语义,所以我们必须从数据中提取出数据产生的时间戳。这里为了更清楚地看到程序行为,我们自定义了一个数据源,发出三条测试数据,时间戳分别为 1000、11000和 11001,并且发出数据后都会停顿 5 秒。


在代码中,我们依然将所有数据分到同一分区,然后在自定义的 KeyedProcessFunction 中使用定时器。同样地,每来一条数据,我们就将当前的数据时间戳和水位线信息输出,并注册一个 10 秒后(以当前数据时间戳为基准)的事件时间定时器。执行程序结果如下:

数据到达,时间戳为:1000
数据到达,水位线为:-9223372036854775808
-------分割线-------
数据到达,时间戳为:11000
数据到达,水位线为:999
-------分割线-------
数据到达,时间戳为:11001
数据到达,水位线为:10999
-------分割线-------
定时器触发,触发时间:11000
定时器触发,触发时间:21000
定时器触发,触发时间:21001

每来一条数据,都会输出两行“数据到达”的信息,并以分割线隔开;两条数据到达的时间间隔为 5 秒。当第三条数据到达后,随后立即输出一条定时器触发的信息;再过 5 秒之后,剩余两条定时器信息输出,程序运行结束。


我们可以发现,数据到来之后,当前的水位线与时间戳并不是一致的。当第一条数据到来,时间戳为 1000,可水位线的生成是周期性的(默认 200ms 一次),不会立即发生改变,所以依然是最小值 Long.MIN_VALUE;随后只要到了水位线生成的时间点(200ms 到了),就会依据当前的最大时间戳 1000 来生成水位线了。这里我们没有设置水位线延迟,默认需要减去 1 毫秒,所以水位线推进到了 999。而当时间戳为 11000 的第二条数据到来之后,水位线同样没有立即改变,仍然是 999,就好像总是“滞后”数据一样。


这样程序的行为就可以得到合理解释了。事件时间语义下,定时器触发的条件就是水位线推进到设定的时间。第一条数据到来后,设定的定时器时间为 1000 + 10 * 1000 = 11000;而当时间戳为 11000 的第二条数据到来,水位线还处在 999 的位置,当然不会立即触发定时器;而之后水位线会推进到 10999,同样是无法触发定时器的。必须等到第三条数据到来,将水位线真正推进到 11000,就可以触发第一个定时器了。第三条数据发出后再过 5 秒,没有更多的数据生成了,整个程序运行结束将要退出,此时 Flink 会自动将水位线推进到长整型的最大值(Long.MAX_VALUE)。于是所有尚未触发的定时器这时就统一触发了,我们就在控制台看到了后两个定时器的触发信息。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
6天前
|
SQL Oracle 关系型数据库
Flink的表值函数
【2月更文挑战第18天】Flink的表值函数
19 3
|
6天前
|
SQL Oracle 关系型数据库
Flink的表值函数(Table-Valued Function,TVF)是一种返回值是一张表的函数
【2月更文挑战第17天】Flink的表值函数(Table-Valued Function,TVF)是一种返回值是一张表的函数
25 1
|
6天前
|
SQL 存储 Apache
在 Apache Flink SQL 中,并没有内置的 GROUP_CONCAT 函数
【2月更文挑战第16天】在 Apache Flink SQL 中,并没有内置的 GROUP_CONCAT 函数
224 2
|
6天前
|
SQL 消息中间件 Apache
Flink报错问题之使用hive udf函数报错如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
|
7月前
|
传感器 存储 缓存
Flink---10、处理函数(基本处理函数、按键分区处理函数、窗口处理函数、应用案例TopN、侧输出流)
Flink---10、处理函数(基本处理函数、按键分区处理函数、窗口处理函数、应用案例TopN、侧输出流)
|
9月前
|
存储 缓存 API
Flink之处理函数 (ProcessFunction)2
Flink之处理函数 (ProcessFunction)
86 0
|
2天前
|
Oracle 关系型数据库 数据库
实时计算 Flink版操作报错合集之执行Flink job,报错“Could not execute SQL statement. Reason:org.apache.flink.table.api.ValidationException: One or more required options are missing”,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
38 0
|
3天前
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版操作报错合集之遇到报错:Apache Kafka Connect错误如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
25 5
|
3天前
|
SQL 关系型数据库 MySQL
实时计算 Flink版操作报错合集之报错:org.apache.flink.table.api.validationexception如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
34 1
|
3天前
|
存储 SQL 关系型数据库
实时计算 Flink版操作报错合集之报错:WARN (org.apache.kafka.clients.consumer.ConsumerConfig:logUnused)这个错误如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
33 3