数据分析 | Numpy实战(一) - 分析某单车骑行时间

简介: 数据分析 | Numpy实战(一) - 分析某单车骑行时间

关于数据科学的学习,咸鱼也进行了一段时间,但是光学不练是学一点忘一点,所以咸鱼找了一些某共享单车的数据进行一点简单的数据分析。

思路整理

咸鱼也是第一次动手写数据分析相关的代码,所以咸鱼上网找了一张大致的流程图,且以此整理思路,分隔代码。

图 | 源自网络

在企业实际开发中各个步骤的代码不会像咸鱼下面的代码一样各块分隔的那么清楚,肯定是相互交织且复杂的。

实战

分析目的

看标题就知道了,分析各季度共享单车的骑行时间。

数据收集

因为这次的数据源自网络,所以先简单看下数据的结构:

可以看到数据有9个字段:

"Duration (ms)","Start date","End date","Start station number","Start station","End station number","End station","Bike number","Member type"

按照我们的目标,我们只需要第一个字段Duration(ms)

所以第一步先读取已经下载好的数据之后在第二步数据清洗中取出需要的字段:

# 数据收集
def data_collection():
    data_arr_list = []
    for data_filename in data_filenames:
        file = os.path.join(data_path, data_filename)
        data_arr = np.loadtxt(file,dtype=bytes,delimiter=',', skiprows=1).astype(str)
        data_arr_list.append(data_arr)
    return data_arr_list

这里关于numpy的用法,可以参考之前的几篇关于numpy的文章:

Data Science | Numpy基础(一)

Data Science | Numpy基础(二)

Data Science | 福利列表 | Numpy基础(三)

数据清洗

因为数据是整理后导出的数据所以不需要清洗缺失值等操作,我们直接取出需要的字段,做一些处理即可。

这里骑行时间单位为ms,所以需要转化为min需要/1000/60。

# 数据清洗
def data_clean(data_arr_list):
    duration_min_list = []
    for data_arr in data_arr_list:
        data_arr = data_arr[:,0]
        duration_ms = np.core.defchararray.replace(data_arr,'"','')
        duration_min = duration_ms.astype('float') / 1000 / 60
        duration_min_list.append(duration_min)
    return duration_min_list
数据分析

计算平均值在numpy中提供了计算函数,直接调用即可。

# 数据分析
def mean_data(duration_min_list):
    duration_mean_list = []
    for duration_min in duration_min_list:
        duration_mean = np.mean(duration_min)
        duration_mean_list.append(duration_mean)
    return duration_mean_list
结果展示

这里可视化展示使用的是matplotlib.pyplot库,咸鱼目前还没有写相关的入门文章,可以上网看下文档学习下简单使用即可,之后会有系列文章写可视化的内容。

# 数据展示
def show_data(duration_mean_list):
    plt.figure()
    name_list = ['第一季度', '第二季度', '第三季度', '第四季度']
    plt.bar(range(len(duration_mean_list)),duration_mean_list,tick_label = name_list)
    plt.show()

成果展示

单单从上面的图可以看到以炎热的夏季和凉爽的秋季为主调的二三季度的骑行时间要高于春冬为主调的一四季度,以此判断气温变化对人们使用的共享单车的影响。

一些踩过的坑

关于数据读取(一)

在python中字符串是有字节字符串和文本字符串之分的,我们通常说的字符串是指文本字符串。而使用numpy的loadtxt函数读取的字符串默认是字节字符串,输出的话字符串前面会有个b,形如b’……’。通常是需要转换的,如果不转换将会出现问题。

数据收集部分如果不注意这一点,在数据清洗部分,字段的格式就会因为Duration的值多了一个b转化上就会报错。

处理方式:

numpy.loadtxt读入的字符串总是bytes格式,总是在前面加了一个b

原因:np.loadtxt and np.genfromtxt operate in byte mode, which is the default string type in Python 2. But Python 3 uses unicode, and marks bytestrings with this b. numpy.loadtxt中也声明了:Note that generators should return byte strings for Python 3k.解决:使用numpy.loadtxt从文件读取字符串,最好使用这种方式np.loadtxt(filename, dtype=bytes).astype(str)

作者:Cameron

链接:https://www.zhihu.com/question/28690341/answer/164344688

来源:知乎

关于数据读取上的坑(二)

可以看到咸鱼在读取数据的时候使用的是numpy.loadtxt,这样的操作固然方便,但是代价就是内存直接爆掉,还好这次的数据才500M,所以不推荐大家使用我这个方法,之后会加以改进(如果我会的话

这里分享一段代码,来自慕课网bobby老师的实战课,如何使用生成器读取大文本文件:

#500G, 特殊 一行
def myreadlines(f, newline):
  buf = ""
  while True:
    while newline in buf:
      pos = buf.index(newline)
      yield buf[:pos]
      buf = buf[pos + len(newline):]
    chunk = f.read(4096)
    if not chunk:
      #说明已经读到了文件结尾
      yield buf
      break
    buf += chunk
with open("input.txt") as f:
    for line in myreadlines(f, "{|}"):
        print (line)
关于matplotlib.pyplot使用上的坑

在可视化的时候,柱状图的标识是中文,在显示的时候直接显示的是方块,无法显示中文。如下:

错误示范

处理方法:

解决方式一:修改配置文件
(1)找到matplotlibrc文件(搜索一下就可以找到了)
(2)修改:font.serif和font.sans-serif,我的在205,206行
font.serif: SimHei, Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
font.sans-serif: SimHei, Bitstream Vera Sans, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif
解决方式二:在代码中修改
import matplotlib
指定默认字体
matplotlib.rcParams[‘font.sans-serif’] = [‘SimHei’]
matplotlib.rcParams[‘font.family’]=’sans-serif’
解决负号’-‘显示为方块的问题
matplotlib.rcParams[‘axes.unicode_minus’] = False
---------------------
来源:CSDN
原文:https://blog.csdn.net/weixin_40283480/article/details/81613008
相关文章
|
4月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
559 0
|
5月前
|
数据采集 人工智能 算法
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
214 34
|
4月前
|
数据采集 SQL 监控
“你分析个锤子啊,米都没洗净”——数据采集和数据分析的底层逻辑真相
“你分析个锤子啊,米都没洗净”——数据采集和数据分析的底层逻辑真相
121 0
|
9月前
|
SQL JSON 数据可视化
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
13449 16
|
9月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
292 0
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
140 0
|
3月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
346 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程

热门文章

最新文章

下一篇
oss云网关配置