基于二进制草蝉优化算法选择特征并使用 KNN 进行训练(Matlab代码实现)

简介: 基于二进制草蝉优化算法选择特征并使用 KNN 进行训练(Matlab代码实现)

💥1 概述


基于二进制草蝉优化算法选择特征并使用KNN(K-Nearest Neighbors,K最近邻算法)进行训练是一种特征选择和分类算法的组合。这种方法主要用于解决特征选择问题,并利用选定的特征集合来训练KNN分类器。


下面是该算法的基本步骤:


特征选择:


采用二进制草蝉优化算法对原始特征集进行优化,从而选择出最佳特征子集。二进制草蝉优化算法是一种基于草蝉行为的启发式优化算法,用于解决特征选择问题。该算法通过模拟草蝉的生存行为来选择特征子集,以使得目标函数最小化或最大化。


特征提取:


通过二进制草蝉优化算法选择出的最佳特征子集,对原始数据集进行特征提取,得到一个新的数据集,该数据集只包含选定的特征。


数据预处理:


对特征提取后的数据集进行预处理,包括归一化、标准化或其他必要的数据处理步骤,以确保数据的可比性和有效性。


KNN分类器:


使用KNN算法来对处理后的数据集进行分类。KNN是一种常见的分类算法,它通过计算待分类样本与训练样本之间的距离,选取最近的K个训练样本,并根据这K个样本的分类标签来预测待分类样本的标签。


训练和测试:


使用经过特征选择和KNN分类器训练得到的模型,对测试数据进行分类,评估分类结果的准确性和性能。


需要注意的是,特征选择是为了去除冗余和噪音特征,提高分类性能和降低计算复杂度。而KNN作为分类器是一种懒惰学习方法,具有简单易实现的优点,但在大规模数据上可能效率较低。


最终的结果取决于草蝉优化算法的性能、特征选择和KNN分类器的调优以及数据集本身的特性。因此,在实际应用中,可能需要进行多次实验和优化,以选择最合适的特征子集和分类器参数。同时,建议参考相关研究论文和文献,以获得更深入的了解和具体实现细节。


📚2 运行结果


主函数部分代码:

close all
clear
clc
addpath(genpath(cd))
%% load the data
% load winedata.mat
load breast-cancer-wisconsin
% load ionosphere
% load Parliment1984
% load heartdata
load lymphography
%%
% preprocess data to remove Nan entries
for ii=1:size(Tdata,2)
    nanindex=isnan(Tdata(:,ii));
    Tdata(nanindex,:)=[];
end
labels=Tdata(:,end);                  %classes
attributesData=Tdata(:,1:end-1);      %wine data
% for ii=1:size(attributesData,2)       %normalize the data
%     attributesData(:,ii)=normalize(attributesData(:,ii));
% end
[rows,colms]=size(attributesData);  %size of data    
%% seprate the data into training and testing
[trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);
trainData=attributesData(trainIdx,:);   %training data
testData=attributesData(testIdx,:);     %testing data
trainlabel=labels(trainIdx);            %training labels
testlabel=labels(testIdx);              %testing labels
%% KNN classification
Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);
predictedLables_KNN=predict(Mdl,testData);
cp=classperf(testlabel,predictedLables_KNN);
err=cp.ErrorRate;
accuracy=cp.CorrectRate;
%% SA optimisation for feature selection
dim=size(attributesData,2);
lb=0;ub=1;
x0=round(rand(1,dim));
fun=@(x) objfun(x,trainData,testData,trainlabel,testlabel,dim);
options = optimoptions(@simulannealbnd,'MaxIterations',150,...
            'PlotFcn','saplotbestf');
[x,fval,exitflag,output]  = simulannealbnd(fun,x0,zeros(1,dim),ones(1,dim),options) ;
Target_pos_SA=round(x);
% final evaluation for GOA tuned selected features
[error_SA,accuracy_SA,predictedLables_SA]=finalEval(Target_pos_SA,trainData,testData,...
                                                                   trainlabel,testlabel);
%% GOA optimisation for feature selection
SearchAgents_no=10; % Number of search agents
Max_iteration=100; % Maximum numbef of iterations
[Target_score,Target_pos,GOA_cg_curve, Trajectories,fitness_history,...
          position_history]=binaryGOA(SearchAgents_no,Max_iteration,lb,ub,dim,...
                                            trainData,testData,trainlabel,testlabel);
% final evaluation for GOA tuned selected features
[error_GOA,accuracy_GOA,predictedLables_GOA]=finalEval(Target_pos,trainData,testData,trainlabel,testlabel);                                                               
%%
% plot for Predicted classes
figure
plot(testlabel,'s','LineWidth',1,'MarkerSize',12)
hold on
plot(predictedLables_KNN,'o','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_GOA,'x','LineWidth',1,'MarkerSize',6)
hold on
plot(predictedLables_SA,'^','LineWidth',1,'MarkerSize',6)
% hold on
% plot(predictedLables,'.','LineWidth',1,'MarkerSize',3)
legend('Original Labels','Predicted by All','Predcited by GOA Tuned',...          
                                 'Predcited by SA Tuned','Location','best')
title('Output Label comparison of testing Data')
xlabel('-->No of test points')
ylabel('Test Data Labels' )
axis tight
% pie chart for accuracy corresponding to number of features
figure
subplot(1,2,1)
labels={num2str(size(testData,2)),num2str(numel(find(Target_pos))),...
                                      num2str(numel(find(Target_pos_SA)))};
pie([(size(testData,2)),numel(find(Target_pos)),numel(find(Target_pos_SA))],labels)
title('Number of features selected')
legendlabels={'Total Features','Features after GOA Selection',...
                                                    'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')
subplot(1,2,2)
labels={num2str(accuracy*100),num2str(accuracy_GOA*100),num2str(accuracy_SA*100)};
pie([accuracy,accuracy_GOA,accuracy_SA].*100,labels)                                                        
title('Accuracy for features selected')
legendlabels={'Total Features','Features after GOA Selection',...
                                                       'Features after SA Selection'};
legend(legendlabels,'Location','southoutside','Orientation','vertical')


🎉3 参考文献

[1]张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008(03):170-172.

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
6天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
机器学习/深度学习 算法 分布式数据库
数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码(下)
数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码
7 1
|
1天前
|
算法
数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码(上)
数据结构与算法⑭(第四章_下)二叉树的模拟实现和遍历代码
9 1
|
3天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
21 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
4天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
6天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
6天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
10 1
|
6天前
|
机器学习/深度学习 算法 API
【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
9 0
|
6天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
6天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
19 1