【论文速递】NAACL2022- 文档级事件论元抽取的双流AMR增强模型

简介: 以往的研究大多致力于从单个句子中抽取事件,而文档级别的事件抽取仍未得到充分的研究。在本文中,我们专注于从整个文档中抽取事件论元

【论文速递】NAACL2022- 文档级事件论元抽取的双流AMR增强模型



代码:RunxinXu/TSAR: Source code for “A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction” @ NAACL 2022 (github.com)


论文:[2205.00241] A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction (arxiv.org)


期刊/会议:NAACL 2022


摘要


以往的研究大多致力于从单个句子中抽取事件,而文档级别的事件抽取仍未得到充分的研究。在本文中,我们专注于从整个文档中抽取事件论元,主要面临两个关键问题:1)触发词与语句论元之间的长距离依赖关系;B)文件中一个事件的分散在上下文中。为了解决这些问题,我们提出了一个Two-Stream Abstract meaning Representation enhance extraction model(TSAR)。TSAR通过双流编码模块(two-stream encoding module)从不同角度对文档进行编码,以利用本地和全局信息,并降低分散在上下文的影响。此外,TSAR还引入了基于局部和全局构建的AMR语义图的AMR引导交互模块(AMR-guided interaction module),以捕获句内和句间特征。引入一种辅助边界损失来显式增强文本跨度的边界信息。大量实验表明,TSAR在公共RAMS和WikiEvents数据集上的性能分别提高了2.54 F1和5.13 F1,在跨句论元抽取方面表现出了优势。


1、简介


事件论元抽取(Event Argument Extraction, EAE)旨在识别作为事件论元的实体,并预测它们在事件中扮演的角色,这是事件抽取(Event Extraction, EE)的关键步骤。它有助于将非结构化文本转换为结构化事件知识,可以进一步用于推荐系统、对话系统等。大多数先前的研究假设事件仅仅出现在单个句子中,因此聚焦在句子级别的研究上。然而,在现实场景中,事件通常是通过由多句话组成的整个文档来描述的(例如,一篇新闻文章或一份财务报告),这仍然有待研究。


af49438435114bd6900e97fbbe179eee.png


图1演示了文档级EAE的一个示例,其中Transport事件由shipment触发。与句子级的EAE不同,从整个文档中抽取论点面临两个关键挑战。(1)触发词与论元之间的远距离依赖(long-distance dependency)。这些论元通常位于与触发词不同的句子中,而且它们的距离可能相当远。在图1中,虽然触发词shipment在第2句中,但vehicle(车辆)、origin(原产地)、artifact(工件)和importer(进口商)等论元位于第1句或第3句中,这极大地增加了抽取的难度。为了适应长范围抽取,不仅要对句内语义进行建模,而且要对句间语义进行建模。(2)语境分散(distracting context)。虽然一份文档自然包含了比一句话更多的上下文,但有些内容会让人分心。上下文可以误导论元抽取。如图1所示,不需要第4句,就可以更容易地确定origin论元 U.S. ,第4句没有提供事件的有用信息,但包含了许多可能分散注意力的place(位置)实体,如Saudi Arabia(沙特阿拉伯)、Russia(俄罗斯)或Iran(伊朗)。在剔除那些分散注意力的信息的同时,找出有用的上下文仍然具有挑战性。


最近,Du和Cardie使用了一种基于标记的方法,该方法无法处理嵌套论元。相反,基于跨度的方法预测候选跨度的论元角色。一些研究直接生成基于序列到序列模型的论元。然而,如何在触发词和论元之间建模长距离依赖关系,以及如何显式地处理分散注意力的上下文,在很大程度上仍有待探索。


在本文中,为了解决上述两个问题,我们提出了一个双流增强抽取模型(two - stream AMR-enenhanced extraction model, TSAR)。为了利用文档中的基本上下文,并避免被干扰所误导,我们引入了一个双流编码模块。它由一个全局编码器和一个局部编码器组成,前者使用尽可能多的上下文对全局语义进行编码,以收集足够的上下文信息;后者专注于最基本的信息,并谨慎地考虑额外的上下文。这样,TSAR可以利用不同编码视角的互补优势,从而更好地利用可行上下文来受益于抽取。此外,为了模拟远程依赖关系,我们引入了AMR引导的交互模块。抽象语义表示(AMR)图包含了不同概念之间丰富的层次语义关系,有利于复杂事件的抽取。从这种语言驱动的角度出发,我们将文档的线性结构转换为全局和局部的图结构,然后使用图神经网络来增强交互,特别是那些非局部元素。最后,由于TSAR在span级别抽取论元,其中span边界可能是模糊的,我们引入了一个辅助边界损失来增强具有校准边界的span表示。


总之,我们的贡献有三方面。1)提出了文档级EAE的双流编码模块,该模块通过两个不同的视角对文档进行编码,从而更好地利用上下文。2)引入了AMR引导的交互模块,以促进文档内部的语义交互,从而更好地捕获长距离依赖关系。3)我们的实验表明,TSAR在公共RAMS和WikiEvents数据集上分别提高了2.54 F1和5.13 F1,特别是在跨句事件参数抽取方面。


模型架构


图2显示了我们的模型TSAR的整体架构。文档被送入双流编码模块,然后由AMR引导的交互模块导出全局和局部上下文化表示。信息融合模块融合这两个流表示,分类模块最终预测候选跨度的论元角色。


fe44efc2ddfa4008a447ce3e7a9bb270.png


实验结果


82ea83085e364616b824fb2d9771ec0b.png


表2说明了RAMS数据集上的开发集和测试集的结果。由图可知,在基于B E R T b a s e的模型中,TSAR的性能优于以往的其他方法。例如,在开发集中,与之前的方法相比,TSAR产生了4.93 ~ 7.13 Span F1和3.70 ~ 6.00 Head F1的改进,在测试集中达到8.76 Span F1。此外,在基于大型预训练语言模型的模型中,TSAR优于BART-Gen 2.54 Span F1和1.21 Head F1。这些结果表明,以双流方式编码文档,并引入AMR图来促进交互,有利于捕获句内和句间特征,从而提高性能。


7a5d880eaee04b678bca1ac112b60d9d.png


此外,我们跟随Li等人(2021)评估了论元识别和论元分类,并报告了Head F1和Coref F1。识别需要模型正确检测论元跨度边界,而分类则需要进一步正确预测其论元作用。如表3所示,在这两项任务中,TSAR的表现始终优于其他人。与BART-Gen相比,TSAR在论元识别方面提高了4.87/3.23 Head/Coref F1,在论元分类方面提高了5.13/3.68 Head/Coref F1。在基于B E R T b a s e 的模型中也出现了类似的结果,Head F1在鉴别和分类上分别提高了5.69 ~ 36.37和11.95 ~ 33.34。这些结果表明,TSAR不仅在论元跨度边界的检测上,而且在预测它们的作用方面优于其他方法。


【论文速递 | 精选】


fcc8fa9f87404652beb9e08a0ac9652d.png


论坛地址:https://bbs.csdn.net/forums/paper


如有兴趣可以查看全文理解

目录
相关文章
|
JavaScript 前端开发 安全
前端实践:如何防止xss跨站脚本攻击(vue代码说明)
XSS(跨站脚本)攻击是一种常见的网络安全漏洞,攻击者通过在网页中注入恶意脚本代码,从而实现窃取用户信息、盗取会话令牌等攻击目的。为了防止XSS攻击,我们可以采取以下措施:
7418 0
前端实践:如何防止xss跨站脚本攻击(vue代码说明)
invalid-app-id(无效的AppID)参数问题自查方案
1.首先检查支付宝网关     沙箱环境网关为: [url]https://openapi.alipay[/url]dev.com/gateway.do     正式环境网关为: [url]https://openapi.
8708 12
|
机器学习/深度学习 自然语言处理 算法
【论文精读】ACL 2022:Graph Pre-training for AMR Parsing and Generation
【论文精读】ACL 2022:Graph Pre-training for AMR Parsing and Generation
|
10月前
|
Go vr&ar 图形学
重塑体验:AR/VR技术在游戏与娱乐行业的创新应用
【10月更文挑战第29天】本文探讨了AR/VR技术如何改变游戏与娱乐行业,介绍了AR和VR的基本概念及其在游戏和娱乐中的应用实例,包括《精灵宝可梦GO》的AR开发和VR视频播放器的实现代码,并展望了未来的发展趋势。
700 2
|
11月前
|
SQL Shell 数据库
在TDengine容器中创建初始化数据库的Shell命令实例
以上就是在Docker容器环境中部署并初始化TDengine数据库的全过程,希望对你有所帮助。
351 0
一步步教你将包含其他文件的 Python 脚本等打包成 EXE
最近我编写了一个Python脚本,该脚本需要依赖两个同级目录下的文件才能正常运行。然而,当我将脚本打包成EXE程序后,必须将这两个文件放在EXE文件的同级目录下才能正常执行。为了简化部署,我希望能将这两个文件一起打包到EXE文件中,这时候该怎么办呢?
|
算法 数据可视化 网络安全
清华等高校推出首个开源大模型水印工具包MarkLLM,支持近10种最新水印算法
【6月更文挑战第27天】清华大学等高校发布了开源工具MarkLLM,这是首个专注于大语言模型水印的工具包,支持近10种先进算法。该工具统一了水印实现,便于比较和使用,旨在促进水印技术在保障信息真实性和网络安全上的应用。MarkLLM提供直观界面、可视化及自动化评估,推动了大模型水印研究的进步。[论文链接:](https://arxiv.org/abs/2405.10051)**
434 5
|
自然语言处理 Java 计算机视觉
ACL2023 - AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
事件论元抽取(EAE)识别给定事件的事件论元及其特定角色。最近在基于生成的EAE模型方面取得的进展显示出了与基于分类的模型相比的良好性能和可推广性
342 0
|
机器学习/深度学习 存储 算法
GIT:基于异构图的交互模型与跟踪器的文档级事件抽取 论文解读
文档级事件提取旨在从整篇文章中识别事件信息。由于这项任务的两个挑战,现有的方法并不有效:a)目标事件论点分散在句子中
387 0
|
机器学习/深度学习 自然语言处理 搜索推荐
TSAR: A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction论文解读
以往的研究大多致力于从单个句子中抽取事件,而文档级别的事件抽取仍未得到充分的研究。在本文中,我们专注于从整个文档中抽取事件论元
346 0