基于改进人工蜂群算法的K均值聚类算法(Matlab代码实现)

简介: 基于改进人工蜂群算法的K均值聚类算法(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

人工蜂群(Artificial Bee Colony, ABC)算法作为一种新型的群智能优化算法,近十年发展十分迅速。算法的生物模型是受到蜜蜂在采蜜过程中,蜂群所表现出来的相互协作的智能行为的启发。通过对整个采蜜过程的抽象,提炼出人工蜂群算法,用来解决现实生活中的实际问题。由于人工蜂群算法具有算法实现简单、搜索精度高、鲁棒性较强等特点,且与经典的优化算法相比求解质量较好等,2005年由土耳其学者Karaboga提出,很快引起了众多学者的广泛关注,人工蜂群算法已经应用于旅行商问题、人工神经网络、无线传感器网络节点部署、调度问题等众多领域,并且取得了较好的成果,研究者们还在试图将算法应用到更多新的领域。人工蜂群算法作为一种新型的算法,算法还处于初级阶段,算法模型还不是很完善,在应用时也会表现出许多不足之处,在面对比较复杂的优化问题的时,算法容易“早熟”和陷入局部最优等问题。因此,研究者们开始探究如何在理论上对基本人工蜂群算法改进,在应用领域方面拓展其适用范围等问题。


✨🔎⚡运行结果⚡🔎✨

 

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

a=3;
figure;
GlobalMins=runABC(a);
semilogy(GlobalMins,'k:');
%semilogy(mean(GlobalMins))
title('griewank函数的适应度值收敛趋势');
xlabel('迭代次数(cycles)');
ylabel('适应度(fitness)');
b=3;
GlobalMins=runABCimprove(b);
GlobalMins1=GlobalMins;
hold on;
semilogy(GlobalMins1,'k-');
legend('原始蜂群算法','本文算法');
%%%%%ARTIFICIAL BEE COLONY ALGORITHM%%%%
%Artificial Bee Colony Algorithm was developed by Dervis Karaboga in 2005 
%by simulating the foraging behaviour of bees.
%Copyright ?2008 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering
%Contact:
%Dervis Karaboga (karaboga@erciyes.edu.tr )
%Bahriye Basturk Akay (bahriye@erciyes.edu.tr)
function GlobalMins=runABC(a)
% Set ABC Control Parameters
ABCOpts = struct( 'ColonySize',  20, ...   % Number of Employed Bees+ Number of Onlooker Bees 
    'MaxCycles', 2000,...   % Maximum cycle number in order to terminate the algorithm
    'ErrGoal',     1e-20, ...  % Error goal in order to terminate the algorithm (not used in the code in current version)
    'Dim',       2 , ... % Number of parameters of the objective function   
    'Limit',   100, ... % Control paramter in order to abandone the food source 
    'lb',  -3, ... % Lower bound of the parameters to be optimized
    'ub',  3, ... %Upper bound of the parameters to be optimized
    'ObjFun' , 'griewank', ... %Write the name of the objective function you want to minimize
    'RunTime',1); % Number of the runs 
GlobalMins=zeros(ABCOpts.RunTime,ABCOpts.MaxCycles);
for r=1:ABCOpts.RunTime
% Initialise population
Range = repmat((ABCOpts.ub-ABCOpts.lb),[ABCOpts.ColonySize ABCOpts.Dim]);
Lower = repmat(ABCOpts.lb, [ABCOpts.ColonySize ABCOpts.Dim]);
Colony = rand(ABCOpts.ColonySize,ABCOpts.Dim) .* Range + Lower;%生成初始Colony,其中ColonySize行,Dim列,10*5
%zj先初始化种群规模。。。这个就是算法中式子:x(j)i=x(j)min+rand(0,1)(x(j)max-x(j)min)
Employed=Colony(1:(ABCOpts.ColonySize/2),:);%前一半为引领蜂或食物源,5*5
%zj再将种群的前一半作为引领蜂规模


📜📢🌈参考文献🌈📢📜

[1]黄媛媛. 一种改进的人工蜂群算法及其在k均值聚类中的应用[D].安徽大学,2015.

相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
204 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
143 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
154 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
129 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
120 0
|
2月前
|
编解码 算法 数据可视化
基于MATLAB的人工势场法航迹规划实现方案
基于MATLAB的人工势场法航迹规划实现方案
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
153 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
205 3

热门文章

最新文章