数据结构入门(C语言版)一篇文章教会你手撕八大排序(上)

简介: 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

329fcc73086d492989f227109dc8650a.png


排序的概念


排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

内部排序:数据元素全部放在内存中的排序。

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。


常见的排序算法


a91fdf067e984309a75b20cd863dfab3.png


排序算法的实现


一、直接插入排序


直接插入排序是一种简单的插入排序法,其基本思想是:

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

实际中我们玩扑克牌时,就用了插入排序的思想


image.png


当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。


3529c5c96f4547fe82ba3db85898aab6.gif


代码如下:


void InsertSort(int* a, int n)
{
  assert(a);
  for (int i = 0; i < n - 1; ++i)
  {
    // 将x插入[0, end]有序区间
    int end = i;
    int x = a[end+1];
    while (end >= 0)
    {
      if (a[end] > x)
      {
        a[end + 1] = a[end];
        --end;
      }
      else
      {
        break;
      }
    }
    a[end + 1] = x;
  }
}


直接插入排序是一种比较好理解的排序,在此不多赘述。

直接插入排序的特性总结:


1.元素集合越接近有序,直接插入排序算法的时间效率越高

2.时间复杂度:O(N^2)

3.空间复杂度:O(1),它是一种稳定的排序算法

4.稳定性:稳定


二、希尔排序


希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。


59edf82c669b440f95ff70c5838280ec.jpg


代码如下:


void ShellSort(int* a, int n)
{
  // 按gap分组数据进行预排序
  int gap = 3;
  for (int j = 0; j < gap; ++j)
  {
    for (int i = j; i < n - gap; i += gap)
    {
      int end = i;
      int x = a[end + gap];
      while (end >= 0)
      {
        if (a[end] > x)
        {
          a[end + gap] = a[end];
          end -= gap;
        }
        else
        {
          break;
        }
      }
      a[end + gap] = x;
    }
  }
}



void ShellSort(int* a, int n)
{
  // 多次预排序(gap > 1) +直接插入 (gap == 1)
  int gap = n;
  while (gap > 1)
  {
    gap = gap / 3 + 1;
    for (int i = 0; i < n - gap; ++i)
    {
      int end = i;
      int x = a[end + gap];
      while (end >= 0)
      {
        if (a[end] > x)
        {
          a[end + gap] = a[end];
          end -= gap;
        }
        else
        {
          break;
        }
      }
      a[end + gap] = x;
    }
  } 
}


两种写法一个是给定gap值但有缺陷,而第二种则能够根据需要调整gap值,可以看到,当gap=1时,他就是直接插入排序,可以说,希尔排序就是直接插入排序的一种优化。

希尔排序的特性总结:


1.希尔排序是对直接插入排序的优化。

2.当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。

3.希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算。大概是在O(n^1.25) 到 O(1.6*n^1.25)。

4.稳定性:不稳定


三、选择排序


选择排序基本思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完

直接选择排序:

★在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素

★若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换

★在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素


78fa9b4bec4a48dd9be667528035ea78.gif


在这先写一个交换函数,下面的排序也会用到:


void Swap(int* px, int* py)
{
  int tmp = *px;
  *px = *py;
  *py = tmp;
}


排序代码如下:


void SelectSort(int* a, int n)
{
  int begin = 0, end = n - 1;
  while (begin < end)
  {
    int mini = begin, maxi = begin;
    for (int i = begin; i <= end; ++i)
    {
      if (a[i] < a[mini])
        mini = i;
      if (a[i] > a[maxi])
        maxi = i;
    }
    Swap(&a[begin], &a[mini]);
    if (begin == maxi)
      maxi = mini;
    Swap(&a[end], &a[maxi]);
    ++begin;
    --end;
  }
}


直接选择排序的特性总结:


1.直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用

2.时间复杂度:O(N^2)

3.空间复杂度:O(1)

4.稳定性:不稳定


四、堆排序


**堆排序(Heapsort)**是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。

代码如下:


void AdjustDown(int* a, int n, int parent)//向下调整
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    // 选出左右孩子中小的那一个
    if (child + 1 < n && a[child + 1] > a[child])
    {
      ++child;
    }
    // 如果小的孩子小于父亲,则交换,并继续向下调整
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
// 堆排序 -- O(N*logN)
void HeapSort(int* a, int n)
{
  // O(N)
  for (int i = (n - 1 - 1) / 2; i >= 0; --i)
  {
    AdjustDown(a, n, i);
  }
  // O(N*logN)
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    --end;
  }
}


需要注意的是排升序要建大堆,排降序建小堆,这里的写法是升序。

直接选择排序的特性总结:


1.堆排序使用堆来选数,效率就高了很多。

2.时间复杂度:O(N*logN)

3.空间复杂度:O(1)

4.稳定性:不稳定


五、冒泡排序


交换排序基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置

交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动

冒泡排序:


a4a468fd726b4f8f97acb88c042cf3c8.gif


代码如下:


void BubbleSort(int* a, int n)
{
  int end = n;
  while (end > 0)
  {
    int exchange = 0;
    for (int i = 1; i < end; ++i)
    {
      if (a[i - 1] > a[i])
      {
        exchange = 1;
        Swap(&a[i - 1], &a[i]);
      }
    }
    --end;
    if (exchange == 0)
    {
      break;
    }
  }
}


冒泡排序的特性总结:


1.冒泡排序是一种非常容易理解的排序

2.时间复杂度:O(N^2)

3.空间复杂度:O(1)

4.稳定性:稳定


六、快速排序


快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

相关文章
|
24天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
115 9
|
23天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
61 16
|
19天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
63 8
|
19天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
58 7
|
23天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
78 8
|
26天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
51 4
|
26天前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
40 0
|
15天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
22 1
|
3天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
21 5
|
18天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。