第12章_数据库其它调优策略(下)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 第12章_数据库其它调优策略

3. 优化数据库结构

3.1 拆分表:冷热数据分离


举例1: 会员members表 存储会员登录认证信息,该表中有很多字段,如id、姓名、密码、地址、电 话、个人描述字段。其中地址、电话、个人描述等字段并不常用,可以将这些不常用的字段分解出另一 个表。将这个表取名叫members_detail,表中有member_id、address、telephone、description等字段。 这样就把会员表分成了两个表,分别为 members表 和 members_detail表


创建这两个表的SQL语句如下:

CREATE TABLE members (
    id int(11) NOT NULL AUTO_INCREMENT,
    username varchar(50) DEFAULT NULL,
    password varchar(50) DEFAULT NULL,
    last_login_time datetime DEFAULT NULL,
    last_login_ip varchar(100) DEFAULT NULL,
    PRIMARY KEY(Id)
);
CREATE TABLE members_detail (
    Member_id int(11) NOT NULL DEFAULT 0,
    address varchar(255) DEFAULT NULL,
    telephone varchar(255) DEFAULT NULL,
    description text
);

如果需要查询会员的基本信息或详细信息,那么可以用会员的id来查询。如果需要将会员的基本信息和 详细信息同时显示,那么可以将members表和members_detail表进行联合查询,查询语句如下:

SELECT * FROM members LEFT JOIN members_detail on members.id =
members_detail.member_id;


通过这种分解可以提高表的查询效率。对于字段很多且有些字段使用不频繁的表,可以通过这种分解的方式来优化数据库的性能。

3.2 增加中间表

举例1: 学生信息表 和 班级表 的SQL语句如下:


CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

现在有一个模块需要经常查询带有学生名称(name)、学生所在班级名称(className)、学生班级班 长(monitor)的学生信息。根据这种情况可以创建一个 temp_student 表。temp_student表中存储学生名称(stu_name)、学生所在班级名称(className)和学生班级班长(monitor)信息。创建表的语句如下:

CREATE TABLE `temp_student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stu_name` INT NOT NULL ,
`className` VARCHAR(20) DEFAULT NULL,
`monitor` INT(3) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

接下来,从学生信息表和班级表中查询相关信息存储到临时表中:

insert into temp_student(stu_name,className,monitor)
            select s.name,c.className,c.monitor
            from student as s,class as c
            where s.classId = c.id

以后,可以直接从temp_student表中查询学生名称、班级名称和班级班长,而不用每次都进行联合查 询。这样可以提高数据库的查询速度。


3.3 增加冗余字段


设计数据库表时应尽量遵循范式理论的规约,尽可能减少冗余字段,让数据库设计看起来精致、优雅。 但是,合理地加入冗余字段可以提高查询速度。


表的规范化程度越高,表与表之间的关系就越多,需要连接查询的情况也就越多。尤其在数据量大,而 且需要频繁进行连接的时候,为了提升效率,我们也可以考虑增加冗余字段来减少连接。


这部分内容在《第11章_数据库的设计规范》章节中 反范式化小节 中具体展开讲解了。这里省略。


3.4 优化数据类型

image-20220707213524137.png

情况1:对整数类型数据进行优化。


遇到整数类型的字段可以用 INT 型 。这样做的理由是,INT 型数据有足够大的取值范围,不用担心数 据超出取值范围的问题。刚开始做项目的时候,首先要保证系统的稳定性,这样设计字段类型是可以 的。但在数据量很大的时候,数据类型的定义,在很大程度上会影响到系统整体的执行效率。


对于 非负型 的数据(如自增ID、整型IP)来说,要优先使用无符号整型 UNSIGNED 来存储。因为无符号 相对于有符号,同样的字节数,存储的数值范围更大。如tinyint有符号为-128-127,无符号为0-255,多 出一倍的存储空间。


情况2:既可以使用文本类型也可以使用整数类型的字段,要选择使用整数类型。


跟文本类型数据相比,大整数往往占用更少的存储空间 ,因此,在存取和比对的时候,可以占用更少的 内存空间。所以,在二者皆可用的情况下,尽量使用整数类型,这样可以提高查询的效率。如:将IP地 址转换成整型数据。


情况3:避免使用TEXT、BLOB数据类型


image-20220707214640374.png


情况4:避免使用ENUM类型


修改ENUM值需要使用ALTER语句。


ENUM类型的ORDER BY 操作效率低,需要额外操作。使用TINYINT来代替ENUM类型。


情况5:使用TIMESTAMP存储时间


TIMESTAMP存储的时间范围1970-01-01 00:00:01 ~ 2038-01_19-03:14:07。TIMESTAMP使用4字节,DATETIME使用8个字节,同时TIMESTAMP具有自动赋值以及自动更新的特性。


情况6:用DECIMAL代替FLOAT和DOUBLE存储精确浮点数


非精准浮点: float, double

精准浮点:decimal

Decimal类型为精准浮点数,在计算时不会丢失精度,尤其是财务相关的金融类数据。占用空间由定义的宽度决定,每4个字节可以存储9位数字,并且小数点要占用一个字节。可用于存储比bigint更大的整型数据。


总之,遇到数据量大的项目时,一定要在充分了解业务需求的前提下,合理优化数据类型,这样才能充 分发挥资源的效率,使系统达到最优。


3.5 优化插入记录的速度

插入记录时,影响插入速度的主要是索引、唯一性校验、一次插入记录条数等。根据这些情况可以分别进行优化。这里我们分为MyISAM引擎和InnoDB引擎来讲。


1. MyISAM引擎的表:


① 禁用索引

image-20220707215305640.png


② 禁用唯一性检查

image-20220707215356893.png


③ 使用批量插入


插入多条记录时,可以使用一条INSERT语句插入一条数据,也可以使用一条INSERT语句插入多条数据。插入一条记录的INSERT语句情形如下:


insert into student values(1,'zhangsan',18,1);
insert into student values(2,'lisi',17,1);
insert into student values(3,'wangwu',17,1);
insert into student values(4,'zhaoliu',19,1);

使用一条INSERT语句插入多条记录的情形如下:

insert into student values
(1,'zhangsan',18,1),
(2,'lisi',17,1),
(3,'wangwu',17,1),
(4,'zhaoliu',19,1);

第2种情形的插入速度要比第1种情形快。


④ 使用LOAD DATA INFILE 批量导入


当需要批量导入数据时,如果能用LOAD DATA INFILE语句,就尽量使用。因为LOAD DATA INFILE语句导入数据的速度比INSERT语句块。


2. InnoDB引擎的表:


① 禁用唯一性检查


插入数据之前执行set unique_checks=0来禁止对唯一索引的检查,数据导入完成之后再运行set unique_check=1。这个和MyISAM引擎的使用方法一样。


② 禁用外键检查

image-20220707220034534.png


③ 禁止自动提交

image-20220707220131891.png


3.6 使用非空约束

image-20220707220157606.png

3.7 分析表、检查表与优化表

MySQL提供了分析表、检查表和优化表的语句。分析表主要是分析关键字的分布,检查表主要是检查表是否存在错误,优化表主要是消除删除或者更新造成的空间浪费。


1. 分析表

MySQL中提供了ANALYZE TABLE语句分析表,ANALYZE TABLE语句的基本语法如下:

ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name[,tbl_name]…


默认的,MySQL服务会将 ANALYZE TABLE语句写到binlog中,以便在主从架构中,从服务能够同步数据。 可以添加参数LOCAL 或者 NO_WRITE_TO_BINLOG取消将语句写到binlog中。


使用 ANALYZE TABLE 分析表的过程中,数据库系统会自动对表加一个 只读锁 。在分析期间,只能读取 表中的记录,不能更新和插入记录。ANALYZE TABLE语句能够分析InnoDB和MyISAM类型的表,但是不能作用于视图。


ANALYZE TABLE分析后的统计结果会反应到 cardinality 的值,该值统计了表中某一键所在的列不重复 的值的个数。该值越接近表中的总行数,则在表连接查询或者索引查询时,就越优先被优化器选择使用。也就是索引列的cardinality的值与表中数据的总条数差距越大,即使查询的时候使用了该索引作为查 询条件,存储引擎实际查询的时候使用的概率就越小。下面通过例子来验证下。cardinality可以通过 SHOW INDEX FROM 表名查看。


mysql> ANALYZE TABLE user;
+--------------+---------+----------+---------+
| Table        | Op      | Msg_type |Msg_text |
+--------------+---------+----------+---------+
| atguigu.user | analyze | status   | Ok      |
+--------------+----------+---------+---------+

上面结果显示的信息说明如下:


Table: 表示分析的表的名称。

Op: 表示执行的操作。analyze表示进行分析操作。

Msg_type: 表示信息类型,其值通常是状态 (status) 、信息 (info) 、注意 (note) 、警告 (warning) 和 错误 (error) 之一。

Msg_text: 显示信息。

2. 检查表

MySQL中可以使用 CHECK TABLE 语句来检查表。CHECK TABLE语句能够检查InnoDB和MyISAM类型的表 是否存在错误。CHECK TABLE语句在执行过程中也会给表加上 只读锁 。


对于MyISAM类型的表,CHECK TABLE语句还会更新关键字统计数据。而且,CHECK TABLE也可以检查视 图是否有错误,比如在视图定义中被引用的表已不存在。该语句的基本语法如下:

CHECK TABLE tbl_name [, tbl_name] ... [option] ...
option = {QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

其中,tbl_name是表名;option参数有5个取值,分别是QUICK、FAST、MEDIUM、EXTENDED和 CHANGED。各个选项的意义分别是:


QUICK :不扫描行,不检查错误的连接。

FAST :只检查没有被正确关闭的表。

CHANGED :只检查上次检查后被更改的表和没有被正确关闭的表。

MEDIUM :扫描行,以验证被删除的连接是有效的。也可以计算各行的关键字校验和,并使用计算出的校验和验证这一点。

EXTENDED :对每行的所有关键字进行一个全面的关键字查找。这可以确保表是100%一致的,但 是花的时间较长。

option只对MyISAM类型的表有效,对InnoDB类型的表无效。比如:


e31941c74e8d44274d2ffd8dcb20bc8e.png


该语句对于检查的表可能会产生多行信息。最后一行有一个状态的 Msg_type 值,Msg_text 通常为 OK。 如果得到的不是 OK,通常要对其进行修复;是 OK 说明表已经是最新的了。表已经是最新的,意味着存 储引擎对这张表不必进行检查。


3. 优化表

方式1:OPTIMIZE TABLE


MySQL中使用 OPTIMIZE TABLE 语句来优化表。但是,OPTILMIZE TABLE语句只能优化表中的 VARCHAR 、 BLOB 或 TEXT 类型的字段。一个表使用了这些字段的数据类型,若已经 删除 了表的一大部 分数据,或者已经对含有可变长度行的表(含有VARCHAR、BLOB或TEXT列的表)进行了很多 更新 ,则 应使用OPTIMIZE TABLE来重新利用未使用的空间,并整理数据文件的 碎片 。


OPTIMIZE TABLE 语句对InnoDB和MyISAM类型的表都有效。该语句在执行过程中也会给表加上 只读锁 。

OPTILMIZE TABLE语句的基本语法如下:

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

LOCAL | NO_WRITE_TO_BINLOG关键字的意义和分析表相同,都是指定不写入二进制日志。


a8e9a22d0bea8ccec49ea86ff3a4cb4d.png


执行完毕,Msg_text显示


‘numysql.SYS_APP_USER’, ‘optimize’, ‘note’, ‘Table does not support optimize, doing recreate + analyze instead’


原因是我服务器上的MySQL是InnoDB存储引擎。


到底优化了没有呢?看官网!


MySQL :: MySQL 8.0 Reference Manual :: 13.7.3.4 OPTIMIZE TABLE Statement


在MyISAM中,是先分析这张表,然后会整理相关的MySQL datafile,之后回收未使用的空间;在InnoDB 中,回收空间是简单通过Alter table进行整理空间。在优化期间,MySQL会创建一个临时表,优化完成之 后会删除原始表,然后会将临时表rename成为原始表。


说明: 在多数的设置中,根本不需要运行OPTIMIZE TABLE。即使对可变长度的行进行了大量的更 新,也不需要经常运行, 每周一次 或 每月一次 即可,并且只需要对 特定的表 运行。

image-20220707222156765.png


方式二:使用mysqlcheck命令

image-20220707222305302.png


3.8 小结

上述这些方法都是有利有弊的。比如:


修改数据类型,节省存储空间的同时,你要考虑到数据不能超过取值范围;

增加冗余字段的时候,不要忘了确保数据一致性;

把大表拆分,也意味着你的查询会增加新的连接,从而增加额外的开销和运维的成本。

因此,你一定要结合实际的业务需求进行权衡。


4. 大表优化

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:


4.1 限定查询的范围

禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制 在一个月的范围内;


4.2 读/写分离

经典的数据库拆分方案,主库负责写,从库负责读。


一主一从模式:


aa5e09c4f31b5e4664288f521e3c9f71.png

双主双从模式:


4d08b26b523b41eddb53f3f23323f737.png

4.3 垂直拆分

当数据量级达到 千万级 以上时,有时候我们需要把一个数据库切成多份,放到不同的数据库服务器上, 减少对单一数据库服务器的访问压力。


f525cd34d37ecdb6e49daa403765443c.png


如果数据库的数据表过多,可以采用垂直分库的方式,将关联的数据库部署在同一个数据库上。

如果数据库中的列过多,可以采用垂直分表的方式,将一张数据表分拆成多张数据表,把经常一起使用的列放在同一张表里。

ddde830a14370c36d38801114bddc015.png


垂直拆分的优点: 可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。


垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起 JOIN 操作。此外,垂直拆分会让事务变得更加复杂。


4.4 水平拆分

image-20220707222954304.png

54f5662227acbc6134b9912d6789719a.png

image-20220707223024163.png


下面补充一下数据库分片的两种常见方案:


客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。

**中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。**我们现在 谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。

5. 其它调优策略

5.1 服务器语句超时处理

在MySQL 8.0中可以设置 服务器语句超时的限制 ,单位可以达到 毫秒级别 。当中断的执行语句超过设置的 毫秒数后,服务器将终止查询影响不大的事务或连接,然后将错误报给客户端。

设置服务器语句超时的限制,可以通过设置系统变量 MAX_EXECUTION_TIME 来实现。默认情况下, MAX_EXECUTION_TIME的值为0,代表没有时间限制。 例如:

SET GLOBAL MAX_EXECUTION_TIME=2000;
SET SESSION MAX_EXECUTION_TIME=2000; #指定该会话中SELECT语句的超时时间

5.2 创建全局通用表空间

image-20220707223246684.png


5.3 MySQL 8.0新特性:隐藏索引对调优的帮助

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
存储 缓存 监控
数据库优化技术:提升性能与效率的关键策略
【10月更文挑战第15天】数据库优化技术:提升性能与效率的关键策略
79 8
|
3月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
26天前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
26天前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
27天前
|
监控 关系型数据库 MySQL
Linux环境下MySQL数据库自动定时备份策略
在Linux环境下,MySQL数据库的自动定时备份是确保数据安全和可靠性的重要措施。通过设置定时任务,我们可以每天自动执行数据库备份,从而减少人为错误和提高数据恢复的效率。本文将详细介绍如何在Linux下实现MySQL数据库的自动定时备份。
34 3
|
29天前
|
消息中间件 数据库 云计算
微服务架构下的数据库事务管理策略####
在微服务架构中,传统的单体应用被拆分为多个独立的服务单元,每个服务维护自己的数据库实例。这种设计提高了系统的可扩展性和灵活性,但同时也带来了分布式环境下事务管理的复杂性。本文探讨了微服务架构下数据库事务的挑战,并深入分析了几种主流的事务管理策略,包括Saga模式、两阶段提交(2PC)以及基于消息的最终一致性方案,旨在为开发者提供一套适应不同业务场景的事务处理框架。 ####
|
1月前
|
存储 Oracle 关系型数据库
Oracle数据库优化策略
【10月更文挑战第25天】Oracle数据库优化策略
26 5
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
192 1
|
1月前
|
SQL 关系型数据库 数据库
PostgreSQL性能飙升的秘密:这几个调优技巧让你的数据库查询速度翻倍!
【10月更文挑战第25天】本文介绍了几种有效提升 PostgreSQL 数据库查询效率的方法,包括索引优化、查询优化、配置优化和硬件优化。通过合理设计索引、编写高效 SQL 查询、调整配置参数和选择合适硬件,可以显著提高数据库性能。
218 1
|
2月前
|
存储 定位技术 数据库
介绍一下数据库的备份和恢复策略
【10月更文挑战第21】介绍一下数据库的备份和恢复策略