基于mfcc和DTW语音信息特征提取算法matlab仿真

简介: 基于mfcc和DTW语音信息特征提取算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
a924186575aa4d9178fc0d81863b6dc4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
a0434e617407e29be1cda13f08c7d86b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
d43b480c2bf9176b7e27bfbd1cb8b899_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。
梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示:

77122ee625d94d15721f4a5c8153148d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    美尔尺度是建立从人类的听觉感知的频率——Pitch到声音实际频率直接的映射。人耳对于低频声音的分辨率要高于高频的声音。通过把频率转换成美尔尺度,我们的特征能够更好的匹配人类的听觉感知效果。从频率到美尔频率的转换公式如下: 

M(f)=1125ln(1+f/700)M(f)=1125ln(1+f/700)M(f)=1125ln(1+f/700)M(f)=1125ln(1+f/700)

   而从美尔频率到频率的转换公式为:

M−1(m)=700(em/1125−1)M−1(m)=700(em/1125−1)M−1(m)=700(em/1125−1)M−1(m)=700(em/1125−1)
流程图:
054e8ba8114eefcdedfc4d52602bbb91_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

预处理包括预加重、分帧、加窗。
(1)预加重
预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱。同时,也是为了消除发生过程中声带和嘴唇的效应,来补偿语音信号受到发音系统所抑制的高频部分,也为了突出高频的共振峰。预加重处理其实是将语音信号通过一个高通滤波器。

(2)分帧
由于语音信号的非平稳特性 和 短时平稳特性,将语音信号分分帧。一帧有N个采样点,如N的值为256或512,涵盖的时间约为20~30ms左右。为了避免相邻两帧的变化过大,平缓过度,因此会让两相邻帧之间有一段重叠区域,此重叠区域包含了M个取样点,通常M的值约为N的1/2或1/3。通常语音识别所采用语音信号的采样频率为8KHz或16KHz,以8KHz来说,若帧长度为256个采样点,则对应的时间长度是256/8000×1000=32ms。
(3)加窗
为了缓解频谱泄漏。将每一帧乘以一个窗函数,如汉明窗,海宁窗。假设分帧后的信号为S(n), n=0,1…,N-1, N为帧的大小。

  语音信号的倒谱分析就是求信号倒谱特征参数的过程,可以通过同态处理来处理。同态处理实现了卷积关系变化为求和关系的分离操作。 

   由于即使同一个人不同时间发出同一个声音,也不可能具有相同的长度,因此就需要用到动态时间归正(DTW)算法。把时间归正和距离测度计算结合起来的一种非线性归正技术。DTW 本质上是一个简单的动态规划算法,是用来计算两个维数不同的向量之间的相似度的问题,即计算向量 M1 和 M2 的最短距离。是一种非常常用的语音匹配算法。

    对两个不同维数的语音向量 m1 和 m2进行匹配(m1 和 m2 的每一维也是一个向量,是语音每一帧的特征值,这里利用的是 MFCC 特征)。设两个向量的长度为 M1 和 M2,则距离可以表示为:

那么,就可以这样进行匹配:

c045c928115130c047df2efb2155b368_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

每一条从(1,1)到(M1,M2)路径都有一个累计距离称为路径的代价;

每一条路径都代表一种对齐情况;

代价最小的路径就是所求的对准路径。

  1. 定义一个代价函数 , 表示从起始点(1,1)出发,到达(i,j)点最小代价路径的累计距离。有:

65f925d82f7359a81117063af78b634e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序
```function [mj,melNo]= Melfilterbank(STFf,frq,frameNo,points)

melNo=25; %number of mel filters
syms mel(freq)
mel(freq)=1127*log(1+freq/700); % mel scale
center=zeros(1,(melNo+2));
freq1=7000;
freq0=50;
center(1)=mel(freq0);

hbandwidth=(mel(freq1)-mel(freq0))/(melNo+1);% half of bandwidth of each mel filter in mel scale
for i=2:melNo+2
center(i)=center(i-1)+hbandwidth; % center of each filter in mel scale
end

for i=1:melNo+2
center(i)=(exp(center(i)/1127)-1)700; %moving centers to normal frequency scale
end
mj=zeros(frameNo,melNo);
for i=1:melNo
for j=1:frameNo
for k=1:(points/2)+1
if frq(k)>center(i) && frq(k)<center(i+1)
melresult=STFf(j,k)
((1/(center(i+1)-center(i)))(frq(k)-center(i)));
elseif frq(k)>center(i+1) && frq(k)<center(i+2)
melresult=STFf(j,k)
((-1/(center(i+2)-center(i+1)))*(frq(k)-center(i+2)));
else
melresult=0;
end
mj(j,i)=melresult^2+mj(j,i);
end
end
end
mj=log10(mj);
```

相关文章
|
1天前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
使用MATLAB2022a,结合WOA优化算法调整了CNN-LSTM-Attention模型的超参数。WOA仿照鲸鱼捕食策略解决优化问题,提升时间序列预测准确性。模型先用CNN提取局部特征,接着LSTM处理长期依赖,最后注意力机制聚焦相关历史信息。优化前后效果对比图显示,预测性能显著改善。代码中展示了WOA优化的网络训练及预测过程,并绘制了预测值与真实值的比较图表。
|
1天前
|
机器学习/深度学习 存储 算法
m基于Yolov2深度学习网络的螺丝检测系统matlab仿真,带GUI界面
MATLAB 2022a中展示了YOLOv2算法的螺丝检测仿真结果,该系统基于深度学习的YOLOv2网络,有效检测和定位图像中的螺丝。YOLOv2通过批标准化、高分辨率分类器等优化实现速度和精度提升。核心代码部分涉及设置训练和测试数据,调整图像大小,加载预训练模型,构建YOLOv2网络并进行训练,最终保存检测器模型。
16 3
|
2天前
|
机器学习/深度学习 算法 数据可视化
基于深度学习网络的鞋子种类识别matlab仿真
使用GoogLeNet深度学习模型在matlab2022a中进行鞋子种类识别,利用Inception模块捕捉多尺度特征,提升分类精度。程序加载预训练模型`gnet.mat`,计算验证集的准确性并随机显示32个样本的预测结果及置信度。
|
3天前
|
机器学习/深度学习 算法
基于深度学习网络的十二生肖图像分类matlab仿真
该内容是关于使用GoogLeNet算法进行十二生肖图像分类的总结。在MATLAB2022a环境下,GoogLeNet通过Inception模块学习高层语义特征,处理不同尺寸的输入。核心程序展示了验证集上部分图像的预测标签和置信度,以4x4网格显示16张图像,每张附带预测类别和概率。
|
16天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
3天前
|
存储 算法
m基于LDPC编译码的matlab误码率仿真,对比SP,MS,NMS以及OMS四种译码算法
MATLAB 2022a仿真实现了LDPC译码算法比较,包括Sum-Product (SP),Min-Sum (MS),Normalized Min-Sum (NMS)和Offset Min-Sum (OMS)。四种算法在不同通信场景有各自优势:SP最准确但计算复杂度高;MS计算复杂度最低但性能略逊;NMS通过归一化提升低SNR性能;OMS引入偏置优化高SNR表现。适用于资源有限或高性能需求的场景。提供的MATLAB代码用于仿真并绘制不同SNR下的误码率曲线。
126 3
|
6天前
|
算法 数据安全/隐私保护 计算机视觉
基于DCT变换的彩色图像双重水印嵌入和提取算法matlab仿真
**算法摘要:** - 图形展示:展示灰度与彩色图像水印应用,主辅水印嵌入。 - 软件环境:MATLAB 2022a。 - 算法原理:双重水印,转换至YCbCr/YIQ,仅影响亮度;图像分割为M×N块,DCT变换后嵌入水印。 - 流程概览:两步水印嵌入,每步对应不同图示表示。 - 核心代码未提供。
|
6天前
|
机器学习/深度学习 算法 数据可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
|
7天前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到&quot;result.txt&quot;以供MATLAB显示图像分割效果。
|
7天前
|
算法 搜索推荐 数据挖掘
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集
MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集