BP神经网络(Back Propagation Neural Network)算法原理推导与Python实现详解

简介: BP神经网络(Back Propagation Neural Network)算法原理推导与Python实现详解

正文


##BP神经网络算法推导

给定训练集:

D={(x1,y1),(x2,y2),...,(xm,ym)},xiRI,yiRO

即数据有D 个特征,标签为O 维实值向量。


因此,我们定义一个拥有I 个输入层神经元、O个输出层神经元的神经网络,且设该网络的隐藏层神经元个数为H。

其中,隐藏层第h 个神经元的阀值用γ h 表示,输出层第o 个神经元的阀值用θ  表示。

输入层第i ii个神经元与隐藏层第h hh个神经元之间的连接权重为ν i h,记隐藏层第h hh个神经元接收到的输入为α h = ∑ i = 1 I ν i h x i  

隐藏层第h hh个神经元与输出层第o oo个神经元之间的连接权重为ω h o ,记输出层第o oo个神经元接收到的输入为β o = ∑ h = 1 H ω h o b h 其中b h 为隐藏层第h 个神经元的输出。

假设隐藏层和输出层都使用Sigmoid函数作为激活函数

Sigmoid函数:

5.png

对于训练集中的一个训练例k :6.png假设神经网络的输出为7.png,则有:

8.png

由此可以得到,神经网络在训练例k kk上的均方误差为:

9.png

BP是一个迭代学习算法,迭代的每一轮都会对权重进行更新,基于梯度下降算法和链式求导法则,我们可以得到:

1、对隐藏层第h hh个神经元与输出层第o oo个神经元之间的连接权重ω h o  的更新估计式为:

10.png

其中

11.png

因此,权重ω h o 的更新估计式为:


12.png

2、对输入层第i ii个神经元与隐藏层第h hh个神经元之间的连接权重ν i h 的更新估计式为:


13.png

其中:

14.png15.png16.png

因此,权重ν i h  的更新估计式为

18.png


##BP神经网络Python实现

该神经网络被设置为三层:一层输入层、一层隐藏层、一层输出层

样本集:

特征一 特征二 标签
0 0 0
0 1 1
1 0 1
1 1 0


可以看出,这就是一个异或样本集,使用这个样本集可以展现出神经网络与感知机在处理非线性可分问题上的差别。

import math
import random
# 用于设置权重矩阵的大小并给定初始权重
def weight_matrix(row, col, weight=0.0):
    weightMat = []
    for _ in range(row):
        weightMat.append([weight] * col)
    return weightMat
# 用于给权重矩阵内的每元素生成一个初始随机权重
def random_weight(parm_1, parm_2):
    return (parm_1 - 1) * random.random() + parm_2
# Sigmoid激活函数
def sigmoid(x):
    return 1.0 / (1.0 + math.exp(-x))
# Sigmoid激活函数的导函数
def sigmoid_derivate(x):
    return x * (1 - x)
# 定义BP神经网络类
class BPNeuralNetwork:
    def __init__(self):
        # 定义输入层、隐藏层、输出层,所有层的神经元个数都初始化为0
        self.input_num, self.hidden_num, self.output_num = 0, 0, 0
        # 定义输入层、隐藏层、输出层的值矩阵,并在setup函数中初始化
        self.input_values, self.hidden_values, self.output_values = [], [], []
        # 定义输入-隐藏层、隐藏-输出层权重矩阵,并在setup函数中设置大小并初始化
        self.input_hidden_weights, self.hidden_output_weights = [], []
    # 神经网络的初始化函数
    # 四个参数分别代表:对象自身、输入层神经元个数、隐藏层神经元个数、输出层神经元个数
    def setup(self, input_num, hidden_num, output_num):
        # 设置输入层、隐藏层、输出层的神经元个数,其中输入层包含偏置项因此数量+1
        self.input_num, self.hidden_num, self.output_num = input_num + 1, hidden_num, output_num
        # 初始化输入层、隐藏层、输出层的值矩阵,均初始化为1
        self.input_values = [1.0] * self.input_num
        self.hidden_values = [1.0] * self.hidden_num
        self.output_values = [1.0] * self.output_num
        # 设置输入-隐藏层、隐藏-输出层权重矩阵的大小
        self.input_hidden_weights = weight_matrix(self.input_num, self.hidden_num)
        self.hidden_output_weights = weight_matrix(self.hidden_num, self.output_num)
        # 初始化输入-隐藏层、隐藏-输出层的权重矩阵
        for i in range(self.input_num):
            for h in range(self.hidden_num):
                self.input_hidden_weights[i][h] = random_weight(-0.2, 0.2)
        for h in range(self.hidden_num):
            for o in range(self.output_num):
                self.hidden_output_weights[h][0] = random_weight(-0.2, 0.2)
    # 神经网络的前向预测
    # 两个参数分别代表:对象自身、单个数据
    def predict(self, data):
        # 将数据放入输入层,-1是由于输入层中的偏置项不需要接收数据
        for i in range(self.input_num - 1):
            self.input_values[i] = data[i]
        # 隐藏层计算
        for h in range(self.hidden_num):
            # 激活函数的参数
            total = 0.0
            # 激活函数的参数值由输入层权重和输入层的值确定
            for i in range(self.input_num):
                total += self.input_values[i] * self.input_hidden_weights[i][h]
            # 将经过激活函数处理的输入层的值赋给隐藏层
            self.hidden_values[h] = sigmoid(total - 0)
        # 输出层计算
        for o in range(self.output_num):
            total = 0.0
            for h in range(self.hidden_num):
                total += self.hidden_values[h] * self.hidden_output_weights[h][o]
            self.output_values[o] = sigmoid(total - 0)
        return self.output_values[:]
    # 神经网络的反向传播
    # 四个参数分别代表:对象自身、单个数据、数据对应的标签、学习率(步长)
    # 本函数皆为数学推导的实现
    def back_propagate(self, data, label, learn):
        # 反向传播前先进行前向预测
        self.predict(data)
        # 计算输出层的误差
        output_datas = [0.0] * self.output_num
        for o in range(self.output_num):
            error = label[o] - self.output_values[o]
            output_datas[o] = sigmoid_derivate(self.output_values[o]) * error
        # 计算隐藏层的误差
        hidden_datas = [0.0] * self.hidden_num
        for h in range(self.hidden_num):
            error = 0.0
            for o in range(self.output_num):
                error += output_datas[o] * self.hidden_output_weights[h][o]
            hidden_datas[h] = sigmoid_derivate(self.hidden_values[h]) * error
        # 更新隐藏-输出层权重
        for h in range(self.hidden_num):
            for o in range(self.output_num):
                self.hidden_output_weights[h][o] += learn * output_datas[o] * self.hidden_values[h]
        # 更新输入-隐藏层权重
        for i in range(self.input_num):
            for h in range(self.hidden_num):
                self.input_hidden_weights[i][h] += learn * hidden_datas[h] * self.input_values[i]
        # 计算样本的均方误差
        error = 0
        for o in range(len(label)):
            error += 0.5 * (label[o] - self.output_values[o]) ** 2
        return error
    # 神经网络训练函数
    # 四个参数分别代表:对象自身、数据集、标签、最大循环次数、学习率、终止误差
    def train(self, datas, labels, limit=50000, learn=0.05, stop_error=0.02):
        for i in range(limit):
            error = 0
            for i in range(len(datas)):
                data = datas[i]
                label = labels[i]
                error += self.back_propagate(data, label, learn)
            if error <= stop_error:
                break
    # 神经网络验证函数
    def test(self):
        # 数据集及其标签
        datas = [[0, 0], [0, 1], [1, 0], [1, 1]]
        labels = [[0], [1], [1], [0]]
        # 调用神经网络的初始化函数并传入参数作为输入层、隐藏层、输出层的神经元个数
        # 其中输入层的神经元个数应与数据集的特征数保持一致
        self.setup(2, 5, 1)
        self.train(datas, labels)
        for data in datas:
            print(self.predict(data))
# 定义BP神经网络对象并调用其进行预测
if __name__ == '__main__':
    nn = BPNeuralNetwork()
    nn.test()


神经网络训练结果:

[0.018648283776391633]
[0.9754998553712237]
[0.9806999914518663]
[0.02997622156919269]


该结果与真实值labels[0, 1, 1, 0]基本类似,可以认为神经网络在预测异或这类非线性可分问题上是有效的。



相关文章
|
2月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
2月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
141 5
|
3月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
203 26
|
2月前
|
开发者 Python
Python列表推导式:优雅与效率的完美融合
Python列表推导式:优雅与效率的完美融合
329 104
|
2月前
|
Python
Python列表推导式:优雅与效率的艺术
Python列表推导式:优雅与效率的艺术
296 99
|
2月前
|
数据处理 Python
解锁Python列表推导式:优雅与效率的完美融合
解锁Python列表推导式:优雅与效率的完美融合
276 99
|
2月前
|
开发者 Python
Python列表推导式:一行代码的艺术与力量
Python列表推导式:一行代码的艺术与力量
420 95
|
3月前
|
开发者 Python
Python神技:用列表推导式让你的代码更优雅
Python神技:用列表推导式让你的代码更优雅
462 99
|
3月前
|
程序员 Python
Python列表推导式:简洁与高效的艺术
Python列表推导式:简洁与高效的艺术
299 99
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
266 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!

热门文章

最新文章

推荐镜像

更多