【计算机网络】虚拟路由冗余(VRRP)协议原理与配置

简介: 【计算机网络】虚拟路由冗余(VRRP)协议原理与配置

1、VRRP虚拟路由器冗余协议

1.1、协议作用

虚拟路由冗余协议(Virtual Router Redundancy Protocol,简称VRRP)是由IETF提出的解决局域网中配置静态网关出现单点失效现象的路由协议,1998年已推出正式的RFC2338协议标准。VRRP广泛应用在边缘网络中,它的设计目标是支持特定情况下IP数据流量失败转移不会引起混乱,允许主机使用单路由器,以及及时在实际第一跳路由器使用失败的情形下仍能够维护路由器间的连通性。


1.2、名词解释

虚拟路由器冗余协议(VRRP)是一种选择协议,它可以把一个虚拟路由器的责任动态分配到局域网上的 VRRP 路由器中的一台。控制虚拟路由器 IP 地址的 VRRP 路由器称为主路由器,它负责转发数据包到这些虚拟 IP 地址。一旦主路由器不可用,这种选择过程就提供了动态的故障转移机制,这就允许虚拟路由器的 IP 地址可以作为终端主机的默认第一跳路由器。使用 VRRP 的好处是有更高的默认路径的可用性而无需在每个终端主机上配置动态路由或路由发现协议。 VRRP 包封装在 IP 包中发送。


使用 VRRP ,可以通过手动或 DHCP 设定一个虚拟 IP 地址作为默认路由器。虚拟 IP 地址在路由器间共享,其中一个指定为主路由器而其它的则为备份路由器。如果主路由器不可用,这个虚拟 IP 地址就会映射到一个备份路由器的 IP 地址(这个备份路由器就成为了主路由器)。 VRRP 也可用于负载均衡。 VRRP 是 IPv4 和 IPv6 的一部分。



1.3、简介

VRRP是一种选择协议,它可以把一个虚拟路由器的责任动态分配到局域网上的 VRRP 路由器中的一台。控制虚拟路由器 IP 地址的 VRRP 路由器称为主路由器,它负责转发数据包到这些虚拟 IP 地址。 一旦主路由器不可用,这种选择过程就提供了动态的故障转移机制,这就允许虚拟路由器的 IP 地址可以作为终端主机的默认第一跳路由器。是一种LAN接入设备备份协议。一个局域网络内的所有主机都设置缺省网关,这样主机发出的目的地址不在本网段的报文将被通过缺省网关发往三层交换机,从而实现了主机和外部网络的通信。


VRRP是一种路由容错协议,也可以叫做备份路由协议。一个局域网络内的所有主机都设置缺省路由,当网内主机发出的目的地址不在本网段时,报文将被通过缺省路由发往外部路由器,从而实现了主机与外部网络的通信。当缺省路由器down掉(即端口关闭)之后,内部主机将无法与外部通信,如果路由器设置了VRRP时,那么这时,虚拟路由将启用备份路由器,从而实现全网通信。


VRRP(Virtual Router Redundancy Protocol,虚拟路由冗余协议)是一种容错协议。通常,一个网络内的所有主机都设置一条缺省路由,这样,主机发出的目的地址不在本网段的报文将被通过缺省路由发往路由器RouterA,从而实现了主机与外部网络的通信。当路由器RouterA 坏掉时,本网段内所有以RouterA 为缺省路由下一跳的主机将断掉与外部的通信产生单点故障。VRRP 就是为解决上述问题而提出的,它为具有多播组播或广播能力的局域网(如:以太网)设计。


VRRP 将局域网的一组路由器(包括一个Master 即活动路由器和若干个Backup 即备份路由器)组织成一个虚拟路由器,称之为一个备份组。这个虚拟的路由器拥有自己的IP 地址10.100.10.1(这个IP 地址可以和备份组内的某个路由器的接口地址相同,相同的则称为ip拥有者),备份组内的路由器也有自己的IP 地址(如Master的IP 地址为10.100.10.2,Backup 的IP 地址为10.100.10.3)。局域网内的主机仅仅知道这个虚拟路由器的IP 地址10.100.10.1,而并不知道具体的Master 路由器的IP 地址10.100.10.2 以及Backup 路由器的IP 地址10.100.10.3。 它们将自己的缺省路由下一跳地址设置为该虚拟路由器的IP 地址10.100.10.1。于是,网络内的主机就通过这个虚拟的路由器来与其它网络进行通信。如果备份组内的Master 路由器坏掉,Backup 路由器将会通过选举策略选出一个新的Master 路由器,继续向网络内的主机提供路由服务。从而实现网络内的主机不间断地与外部网络进行通信。


1.4、工作原理

VRRP的工作过程如下:


路由器开启VRRP功能后,会根据优先级确定自己在备份组中的角色。优先级高的路由器成为主用路由器,优先级低的成为备用路由器。主用路由器定期发送VRRP通告报文,通知备份组内的其他路由器自己工作正常;备用路由器则启动定时器等待通告报文的到来。

VRRP在不同的主用抢占方式下,主用角色的替换方式不同:l在抢占方式下,当主用路由器收到VRRP通告报文后,会将自己的优先级与通告报文中的优先级进行比较。如果大于通告报文中的优先级,则成为主用路由器;否则将保持备用状态。l在非抢占方式下,只要主用路由器没有出现故障,备份组中的路由器始终保持主用或备用状态,备份组中的路由器即使随后被配置了更高的优先级也不会成为主用路由器。

如果备用路由器的定时器超时后仍未收到主用路由器发送来的VRRP通告报文,则认为主用路由器已经无法正常工作,此时备用路由器会认为自己是主用路由器,并对外发送VRRP通告报文。备份组内的路由器根据优先级选举出主用路由器,承担报文的转发功能。

在实际组网中一般会进行VRRP负载分担方式的设置。负载分担方式是指多台路由器同时承担业务,避免设备闲置,因此需要建立两个或更多的备份组实现负载分担。VRRP负载分担方式具有以下特点:


每个备份组都包括一个主用路由器和若干个备用路由器。

各备份组的主用路由器可以不相同。

同一台路由器可以加入多个备份组,在不同备份组中有不同的优先级,使得该路由器可以在一个备份组中作为主用路由器,在其他的备份组中作为备用路由器。

VRRP在提高可靠性的同时,简化了主机的配置。在具有多播或广播能力的局域网中,借助VRRP能在某台路由器出现故障时仍然提供高可靠的缺省链路,有效避免单一链路发生故障后网络中断的问题,而无需修改动态路由协议、路由发现协议等配置信息。


一个VRRP路由器有唯一的标识:VRID,范围为0—255。该路由器对外表现为唯一的虚拟MAC地址,地址的格式为00-00-5E-00-01-[VRID]。主控路由器负责对ARP请求用该MAC地址做应答。这样,无论如何切换,保证给终端设备的是唯一一致的IP和MAC地址,减少了切换对终端设备的影响。


VRRP控制报文只有一种:VRRP通告(advertisement)。它使用IP多播数据包进行封装,组地址为224.0.0.18,发布范围只限于同一局域网内。这保证了VRID在不同网络中可以重复使用。为了减少网络带宽消耗只有主控路由器才可以周期性的发送VRRP通告报文。备份路由器在连续三个通告间隔内收不到VRRP或收到优先级为0的通告后启动新的一轮VRRP选举。


在VRRP路由器组中,按优先级选举主控路由器,VRRP协议中优先级范围是0—255。若VRRP路由器的IP地址和虚拟路由器的接口IP地址相同,则该VRRP路由器被称为该IP地址的所有者;IP地址所有者自动具有最高优先级:255。优先级0一般用在IP地址所有者主动放弃主控者角色时使用。可配置的优先级范围为1—254。优先级的配置原则可以依据链路的速度和成本、路由器性能和可靠性以及其它管理策略设定。主控路由器的选举中,高优先级的虚拟路由器获胜,因此,如果在VRRP组中有IP地址所有者,则它总是作为主控路由的角色出现。对于相同优先级的候选路由器,按照IP地址大小顺序选举。VRRP还提供了优先级抢占策略,如果配置了该策略,高优先级的备份路由器便会剥夺当前低优先级的主控路由器而成为新的主控路由器。


为了保证VRRP协议的安全性,提供了两种安全认证措施:明文认证和IP头认证。明文认证方式要求:在加入一个VRRP路由器组时,必须同时提供相同的VRID和明文密码。适合于避免在局域网内的配置错误,但不能防止通过网络监听方式获得密码。IP头认证的方式提供了更高的安全性,能够防止报文重放和修改等攻击。


1.5、应用实例

VRRP协议的工作机理与CISCO公司的HSRP(Hot Standby Routing Protocol)有许多相似之处。但二者主要的区别是在CISCO的HSRP中,需要单独配置一个IP地址作为虚拟路由器对外体现的地址,这个地址不能是组中任何一个成员的接口地址。


使用VRRP协议,不用改造网络结构,最大限度保护了投资,只需最少的管理费用,却大大提升了网络性能,具有重大的应用价值。


最典型的VRRP应用:RTA、RTB组成一个VRRP路由器组,假设RTB的处理能力高于RTA,则将RTB配置成IP地址所有者,H1、H2、H3的默认网关设定为RTB。则RTB成为主控路由器,负责ICMP重定向、ARP应答和IP报文的转发;一旦RTB失败,RTA立即启动切换,成为主控,从而保证了对客户透明的安全切换。


在VRRP应用中,RTB在线时RTA只是作为后备,不参与转发工作,闲置了路由器RTA和链路L1。通过合理的网络设计,可以达到备份和负载分担双重效果。让RTA、RTB同时属于互为备份的两个VRRP组:在组1中RTA为IP地址所有者;组2中RTB为IP地址所有者。将H1的默认网关设定为RTA;H2、H3的默认网关设定为RTB。这样,既分担了设备负载和网络流量,又提高了网络可靠性。


2、 VRRP配置

2.1、配置命令



2.2、拓扑与配置:


目录
相关文章
|
6天前
|
并行计算 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基本概念、技术原理及其潜在应用。通过对量子纠缠、量子叠加和量子隐形传态等核心概念的解释,文章展示了量子互联网如何利用量子力学特性来实现超高速、超高安全性的通信。此外,还讨论了量子互联网在金融、医疗、国防等领域的应用前景,以及当前面临的技术挑战和未来的发展方向。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络的核心原理
本文将深入浅出地介绍深度学习的基本概念,包括神经网络的结构、工作原理以及训练过程。我们将从最初的感知机模型出发,逐步深入到现代复杂的深度网络架构,并探讨如何通过反向传播算法优化网络权重。文章旨在为初学者提供一个清晰的深度学习入门指南,同时为有经验的研究者回顾和巩固基础知识。
43 11
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络背后的原理与实践
【9月更文挑战第29天】本文将带你深入理解深度学习的核心概念,从基础理论到实际应用,逐步揭示其神秘面纱。我们将探讨神经网络的工作原理,并通过实际代码示例,展示如何构建和训练一个简单的深度学习模型。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供宝贵的知识和技能。
15 2
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
深度剖析深度神经网络(DNN):原理、实现与应用
本文详细介绍了深度神经网络(DNN)的基本原理、核心算法及其具体操作步骤。DNN作为一种重要的人工智能工具,通过多层次的特征学习和权重调节,实现了复杂任务的高效解决。文章通过理论讲解与代码演示相结合的方式,帮助读者理解DNN的工作机制及实际应用。
|
22天前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【9月更文挑战第14天】网络协议是机器间交流的约定格式,确保信息准确传达。主要模型有OSI七层与TCP/IP模型,通过分层简化复杂网络环境。IP地址全局定位设备,MAC地址则在本地网络中定位。网络分层后,数据包层层封装,经由不同层次协议处理,最终通过Socket系统调用在应用层解析和响应。
|
23天前
|
网络协议 网络架构 数据格式
TCP/IP基础:工作原理、协议栈与网络层
TCP/IP(传输控制协议/互联网协议)是互联网通信的基础协议,支持数据传输和网络连接。本文详细阐述了其工作原理、协议栈构成及网络层功能。TCP/IP采用客户端/服务器模型,通过四个层次——应用层、传输层、网络层和数据链路层,确保数据可靠传输。网络层负责IP寻址、路由选择、分片重组及数据包传输,是TCP/IP的核心部分。理解TCP/IP有助于深入掌握互联网底层机制。
113 2
|
2月前
|
存储 安全 网络安全
云计算与网络安全的博弈:保护数据在虚拟世界中的安全移动应用开发之旅:从新手到专家
【8月更文挑战第27天】随着云计算技术的飞速发展,企业和个人用户越来越多地将数据和服务迁移到云端。然而,这一转变同时带来了新的安全挑战。本文旨在探讨云计算环境下的网络安全问题,并分析如何通过技术和策略保障信息安全。我们将从云服务的基础知识出发,逐步深入到网络安全和信息安全的高级概念,最后讨论如何实施有效的安全措施来抵御网络威胁。文章不仅涵盖了理论框架,还提供了实际案例分析,旨在为读者提供一套全面的云计算安全指南。
|
2月前
|
JavaScript 网络协议 API
【Azure API 管理】Azure APIM服务集成在内部虚拟网络后,在内部环境中打开APIM门户使用APIs中的TEST功能失败
【Azure API 管理】Azure APIM服务集成在内部虚拟网络后,在内部环境中打开APIM门户使用APIs中的TEST功能失败
|
2月前
|
存储 监控 安全
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)原理与实践
【8月更文挑战第31天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力脱颖而出。本文将深入浅出地探讨卷积神经网络(CNN)这一核心组件,解析其在图像识别等领域的应用原理,并通过Python代码示例带领读者步入实践。我们将从CNN的基本概念出发,逐步深入到架构设计,最后通过一个简易项目展示如何将理论应用于实际问题解决。无论你是深度学习的初学者还是希望深化理解的实践者,这篇文章都将为你提供有价值的洞见和指导。
下一篇
无影云桌面