【深度学习】3、正则化技术全面了解(二)

简介: 【深度学习】3、正则化技术全面了解(二)

6、 Dropout


   Bagging是通过结合多个模型降低泛化误差的技术,主要的做法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。而Dropout可以被认为是集成了大量深层神经网络的Bagging方法, 因此它提供了一种廉价的Bagging集成近似方法,能够训练和评估值数据数量的神经网络。

   Dropout指暂时丢弃一部分神经元及其连接。随机丢弃神经元可以防止过拟合,同时指数级、高效地连接不同网络架构。神经元被丢弃的概率为1 - p,减少神经元之间的共适应。隐藏层通常以0.5的概率丢弃神经元。使用完整网络(每个节点的输出权重为 p)对所有 2^n 个dropout神经元的样本平均值进行近似计算。Dropout显著降低了过拟合,同时通过避免在训练数据上的训练节点提高了算法的学习速度。


7、 Drop Connect


   Drop Connect是另一种减少算法过拟合的正则化策略,是 Dropout的一般化。在Drop Connect的过程中需要将网络架构权重的一个随机选择子集设置为零,取代了在Dropout中对每个层随机选择激活函数的子集设置为零的做法。由于每个单元接收来自过去层单元的随机子集的输入,Drop Connect和 Dropout都可以获得有限的泛化性能。Drop Connect和 Dropout相似的地方在于它涉及在模型中引入稀疏性,不同之处在于它引入的是权重的稀疏性而不是层的输出向量的稀疏性。


8、 最大约束范式


   最大约束范式就是对权值进行约束,限制权值的大小,对每个神经元的权重绝对值给予限制。实际操作中先对所有参数进行正常的更新,然后通过限制每个神经元的权重矢量使其满足关系式:

0dbc32f1eb82ddc9db51101aa7fea770.png

   其中c∈R常用取值为3或4。最大约束范式的特点是对权值的更新进行了约束,即使学习率很大,也不会因网络参数发生膨胀导致过拟合。


9、 基于优化过程的正则化:早停法


   早停法可以限制模型最小化代价函数所需的训练迭代次数。早停法通常用于防止训练中过度表达的模型泛化性能差。如果迭代次数太少,算法容易欠拟合(方差较小,偏差较大),而迭代次数太多,算法容易过拟合(方差较大,偏差较小)。早停法通过确定迭代次数解决这个问题,不需要对特定值进行手动设置。


10、 基于函数模型的正则化


10.1、 参数共享

   在同一网络的多个部分中重用一定的可训练参数,这种方法称为权值共享。当两个模型执行足够相似的分类任务并且具有相似的输入/输出分布时,模型参数之间应当存在一些相关性, 这时认为模型参数具有一定的可重用性,应用这一正则化方法可以使得模型比使用单独训练参数的模型更加简单。


   目前,较为广泛地应用权重共享作为正则化方法的模型之一是卷积神经网络,它通过在图像的多位置共享权值参数从而对有关特征提取的平移不变性和局部性的先验知识进行了编码。此外,权重共享有效降低了卷积神经网络中需要学习的权重的参数数量,支持网络在不断增加训练数据的同时向更深处进行扩展。使用权值共享的模型的另一个例子就是自动编码器,将编码部分与相应的Sigmoid层参数共享,实现网络的构建。

10.2、 噪声标签

   在模型输入部分添加噪声是数据集扩增的一种主要方式。将噪声添加到模型的隐藏单元可以得到常用的噪声模型;噪声模型的例子就是循环神经网络,通过噪声添加到模型权重从而转换到一个有关权重的贝叶斯推断的随机实现。通过贝叶斯推理的学习过程表现权重的不确定性,是一种使用的随机方法,此外,随机池化通过向模型的各个部分注入随机噪声赋予模型随机性实现了确定性模型随机泛化。向输出目标添加噪声的一个重要应用就是标签平滑。

10.3、 标签平滑

标签平滑通过将 softmax 函数明确分类结果替换为有关输出数量的比值, 对模型进行正则化, 它的优势就是能够防止模型陷入精确概率求解并且不影响正常的分类结果, 与之相关的正则化方法是 Mixup。令 x 为样本, y 为标签, 我们可以从训练数据(xi,yi)和(xj,yj)中创造出虚拟训练样本, 用于增强数据集的鲁棒性:

权重λ 是随机数, 线性混合方法是简单的点对点混合。  

10.4、 多任务学习

   多任务学习是一种比较复杂的正则化方法,通过合并多个任务中的样例提高网络泛化。它可以与半监督学习进行结合,从而实现无标记的数据在辅助任务上的应用。在元学习中也使用类似的任务共享概念,即来自同一个领域的多个任务按顺序学习并使用之前获得知识作为新任务的偏置;而在迁移学习中则将来自于一个领域的知识迁移到另一个领域,从而实现多任务学习。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
287 33
|
1月前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
130 1
|
2月前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
144 6
|
1月前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
|
1月前
|
机器学习/深度学习 存储 人工智能
探索深度学习的奥秘:从理论到实践的技术感悟
本文深入探讨了深度学习技术的核心原理、发展历程以及在实际应用中的体验与挑战。不同于常规摘要,本文旨在通过作者个人的技术实践经历,为读者揭示深度学习领域的复杂性与魅力,同时提供一些实用的技术见解和解决策略。
37 0
|
1月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
88 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
163 6
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
143 16
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
100 19