ChIP-seq 分析:GO 功能测试与 Motifs 分析(12)

简介: ChIP-seq 分析:GO 功能测试与 Motifs 分析(12)

动动发财的小手,点个赞吧!

1. 包加载

我们可以使用 rGREAT 包中提供的 GREAT Bioconductor 接口。

library(rGREAT)

2. GO和功能测试

要提交作业,我们可以使用 Myc 峰的 GRanges 并使用 submitGreatJob 函数指定基因组。

此函数返回一个 GreatJob 对象,其中包含对我们在 GREAT 服务器上的结果的引用。要查看可用结果的类别,我们可以在 GreatJob 对象上使用 availableCategories 函数。

great_Job <- submitGreatJob(macsPeaks_GR, species = "mm10", version = "3.0.0", request_interval = 1)
availableCategories(great_Job)

availableCategories

可以使用 getEnrichmentTables 函数检索结果表并指定我们希望查看的表。

在这里,我们检索包含 2 个独立数据库结果的“Regulatory Motifs”基因集的结果表。

great_ResultTable = getEnrichmentTables(great_Job, category = "Regulatory Motifs")
names(great_ResultTable)

great_ResultTable

现在我们可以在“MSigDB 预测的启动子基序”基因集的 TSS 中使用 Myc 峰查看我们的基因的富集情况。

msigProMotifs <- great_ResultTable[["MSigDB Predicted Promoter Motifs"]]
msigProMotifs[1:4, ]

msigProMotifs

3. Motifs 分析

3.1. Motifs

转录因子 ChIPseq 的一个常见做法是研究峰下富集的基序。可以在 R/Bioconductor 中进行从头富集基序,但这可能非常耗时。在这里,我们将使用在线提供的 MEME-ChIP 套件来识别新的基序。

MEME-ChIP 需要一个包含峰下序列的 FASTA 文件作为输入,因此我们使用 BSgenome 包提取它。

3.2. 序列提取

首先,我们需要为我们正在处理的基因组加载 BSgenome 对象,UCSC 为小鼠基因组构建的 mm10,BSgenome.Mmusculus.UCSC.mm10。

library(BSgenome)
library(BSgenome.Mmusculus.UCSC.mm10)
BSgenome.Mmusculus.UCSC.mm10

BSgenome.Mmusculus.UCSC.mm10

我们现在有一个 GRanges,以山顶为中心,每个山峰的最高信号点。

macsSummits_GR

macsSummits_GR

一旦我们使峰重新居中,我们就可以将 getSeq 函数与调整大小的常见峰的 GRanges 和 mm10 的 BSgenome 对象一起使用。

getSeq 函数返回包含峰下序列的 DNAStringSet 对象。

peaksSequences <- getSeq(BSgenome.Mmusculus.UCSC.mm10, macsSummits_GR)
names(peaksSequences) <- paste0(seqnames(macsSummits_GR), ":", start(macsSummits_GR),
    "-", end(macsSummits_GR))

peaksSequences[1:2, ]

peaksSequences

3.3. 写入 FASTA 文件

writeXStringSet 函数允许用户将 DNA/RNA/AA(氨基酸)StringSet 对象写入文件。默认情况下,writeXStringSet 函数以 FASTA 格式写入序列信息(根据 MEME-ChIP 的要求)。

writeXStringSet(peaksSequences, file = "mycMel_rep1.fa")

3.4. MEME-ChIP

现在文件“mycMel_rep1.fa”包含适合 MEME-ChIP 中 Motif 分析的峰几何中心周围的序列。

在您自己的工作中,您通常会在本地安装了 MEME 的笔记本电脑上运行它,但今天我们会将生成的 FASTA 文件上传到他们的门户网站。按照此处的说明在本地安装 MEME。可以在此处找到 MEME-ChIP 的结果文件

3.5. 结果解析

我们可以从 FIMO 输出中检索 MEME-ChIP 中识别的 Myc 基序的位置。

FIMO 将 Myc 基序位置报告为 GFF3 文件,我们应该能够在 IGV 中对其进行可视化。遗憾的是,这个 GFF 文件的命名约定只导致报告了一小部分图案。

3.6. FIMO to R

幸运的是,我们可以将 motif 的 GFF 文件解析为 R 并使用 rtracklayer 包中的导入函数解决这个问题。

library(rtracklayer)
motifGFF <- import("~/Downloads/fimo.gff")

3.7. 获取有效 GFF3

我们可以给序列一些更合理的名称并将 GFF 导出到文件以在 IGV 中可视化。

motifGFF$Name <- paste0(seqnames(motifGFF), ":", start(motifGFF), "-", end(motifGFF))
motifGFF$ID <- paste0(seqnames(motifGFF), ":", start(motifGFF), "-", end(motifGFF))
export.gff3(motifGFF, con = "~/Downloads/fimoUpdated.gff")

fimoUpdated

3.8. 扫描已知 motifs

我们之前看到我们可以使用一些 Biostrings 功能 matchPattern 来扫描序列。通常使用 ChIPseq,我们可能知道我们正在寻找的基序,或者我们可以使用来自数据库(例如 JASPAR)的一组已知基序。

library(JASPAR2020)
JASPAR2020

JASPAR2020

3.9. 使用 TFBStools 从 JASPAR 获取 motifs

我们可以使用 TFBSTools 包及其 getMatrixByName 函数访问我们感兴趣的motif的模型。

library(TFBSTools)
pfm <- getMatrixByName(JASPAR2020, name = "MYC")
pfm

pfm

3.10. 使用 motifmathr 进行 motifs 扫描

有了这个 PWM,我们可以使用 motifmathr 包来扫描我们的山峰以寻找 Myc motif并返回motif的位置。
我们需要提供我们的 PWM、要在内部扫描的 GRanges 和要从中提取序列的 BSGenome 对象。我们还将输出参数设置为这个实例的位置。

library(motifmatchr)
MycMotifs <- matchMotifs(pfm, macsSummits_GR, BSgenome.Mmusculus.UCSC.mm10, out = "positions")
MycMotifs

MycMotifs

3.11. 导出匹配的 motifs

我们可以导出峰内的 Myc 基序位置,以便稍后在 IGV 中使用或用于元图可视化。

export.bed(MycMotifs[[1]], con = "MycMotifs.bed")
相关文章
|
4天前
|
测试技术 数据安全/隐私保护
深入理解与应用软件测试中的边界值分析法
【4月更文挑战第23天】在软件测试的诸多技术中,边界值分析法因其简洁性和高效性而备受青睐。本文旨在探讨边界值分析法的核心原理及其在实际测试场景中的应用。通过对边界条件进行系统的识别、分类和测试,该方法能够有效地发现软件缺陷。我们将详细讨论如何确定边界值,设计测试用例,以及如何处理复杂数据类型的边界情况。此外,文章还将展示通过案例研究来验证边界值分析法在提升测试覆盖率和发现潜在错误方面的实际效益。
|
4天前
|
SQL 安全 数据库连接
《Go 简易速速上手小册》第6章:错误处理和测试(2024 最新版)(上)
《Go 简易速速上手小册》第6章:错误处理和测试(2024 最新版)
44 1
|
4天前
|
JSON 测试技术 Go
《Go 简易速速上手小册》第6章:错误处理和测试(2024 最新版)(下)
《Go 简易速速上手小册》第6章:错误处理和测试(2024 最新版)
44 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
提升软件测试效率与准确性的策略分析
【4月更文挑战第30天】在快速发展的数字时代,软件已成为支撑现代社会运行的核心。随着软件系统的日益复杂化,确保其质量与稳定性显得尤为重要。软件测试作为保障软件质量的关键步骤,它的效率和准确性直接影响着产品的上市时间和用户体验。本文将探讨如何通过采用自动化测试工具、实施持续集成(CI)与持续交付(CD)流程、利用人工智能(AI)技术以及加强测试人员的专业培训等策略来提升软件测试的效率与准确性。
|
3天前
|
测试技术
深入理解与应用软件测试中的边界值分析法
【5月更文挑战第16天】 在追求软件产品质量的道路上,边界值分析法(Boundary Value Analysis, BVA)作为一种高效的测试设计技术,因其独特的关注点和较高的缺陷检出率而备受青睐。本文将探讨BVA的核心概念、操作流程及其在多变的测试场景中的应用优势。通过深入剖析边界值分析法的原理和执行步骤,揭示其在发现潜藏于输入、输出范围边界的软件缺陷方面的有效性,并讨论如何结合其他测试方法以优化测试覆盖率。文章还将展示通过案例分析和统计数据支撑的BVA应用效果,以及在实践中应注意的问题和可能的改进方向。
6 0
|
4天前
|
测试技术
深入理解与应用软件测试中的边界值分析法
【5月更文挑战第14天】 在软件开发的生命周期中,确保代码质量和功能正确性是至关重要的。本文将深入探讨一种高效的软件测试技术——边界值分析法(Boundary Value Analysis, BVA)。不同于通常的摘要形式,此部分将直接引导读者了解BVA的核心原理、应用方法及其在实际工作中的重要性。通过分析边界条件引发的缺陷案例,我们揭示了如何利用BVA提高测试覆盖率,优化测试用例设计,从而提升软件测试的有效性和效率。
|
4天前
|
机器学习/深度学习 人工智能 数据管理
深入分析自动化测试中的挑战与机遇
【5月更文挑战第9天】随着软件行业的迅速发展,自动化测试已经成为确保软件质量、提高开发效率的关键手段。然而,在实施自动化测试过程中,企业和测试人员面临着众多挑战,包括测试脚本的维护问题、测试数据管理、与持续集成/持续部署(CI/CD)流程的融合等。本文将探讨这些挑战,并分析在这些挑战背后所隐藏的机遇,比如测试自动化工具的创新使用、人工智能(AI)在测试中的应用以及测试策略的优化。通过案例分析和最新行业趋势的讨论,我们旨在为读者提供对自动化测试未来发展的深刻见解。
|
4天前
|
安全 数据挖掘 测试技术
深入探究软件测试中的风险分析与管理
【5月更文挑战第7天】 在软件开发生命周期中,风险分析与管理是确保产品质量和项目成功的关键步骤。本文将探讨软件测试过程中如何有效进行风险评估、分类及采取相应的缓解措施。文章首先介绍了风险管理的重要性,然后详细阐述了风险识别的技术和工具,接着分析了如何制定和实施风险应对策略。最后,通过案例研究展示了一个结构化风险分析流程的实施效果。
|
4天前
|
机器学习/深度学习 人工智能 算法
深入分析自动化测试中AI驱动的测试用例生成
【5月更文挑战第4天】随着人工智能(AI)技术的飞速发展,其在软件测试领域的应用也日益广泛。特别是在自动化测试过程中,AI技术能够显著提高测试用例的生成效率和质量。本文将探讨AI在自动化测试用例生成中的应用原理、优势以及面临的挑战,并展示通过AI技术优化测试流程的实际案例。
59 8
|
4天前
|
测试技术
深入理解软件测试中的边界值分析法
【5月更文挑战第2天】 在软件测试领域,边界值分析是一种高效且实用的测试设计技术。本文将探讨边界值分析法的原理、实施步骤以及其在各种测试场景中的应用。通过对边界条件进行精确的测试,可以揭示那些可能被忽视的错误,从而提高软件产品的质量。文中还将讨论如何结合其他测试方法来优化边界值分析,确保测试过程更加全面和高效。