深度之眼(二十二)——Python:Matplotlib(上)

简介: 深度之眼(二十二)——Python:Matplotlib(上)

零、导读



0a2653c851af460fa595bd959398a8f1.png


一、环境配置


●ipython中可用魔术方法%matplotib inline

●pycharm 中必须使用plt. show()


%matplotlib inline
import matplotlib.pyplot as plt
x = [1,2,3,4]
y = [9,8,5,2]
plt.plot(x,y)
plt.ylabel("sss")

0eacb84100b54626af849e6b562bf92a.png

(2)

设置样式


with plt.style.context("seaborn-dark"):
    plt.plot(x,y)


0a2653c851af460fa595bd959398a8f1.png


会永久的保存样式:plt.style.use(“seaborn-whitegrid”)


(3)将图像保存为文件


x = [1,2,3,4]
y = [9,8,5,2]
plt.plot(x,y)
plt.ylabel("sss")
plt.savefig("my_figure.png")


二、Matplotlib库


2.1 折线图


import numpy as np
x = np.linspace(0, 2*np.pi, 100)
plt.plot(x,np.cos(x))

0eacb84100b54626af849e6b562bf92a.png


多条曲线


import numpy as np
x = np.linspace(0, 2*np.pi, 100)
plt.plot(x,np.cos(x))
plt.plot(x,np.sin(x))

0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png4cebaac233b3433da32a72337a77fc60.png6de278e6d6694ce5bb08e7e842b7e74b.png7a399525ddec4b77923c464820b33738 (1).png7a399525ddec4b77923c464820b33738.png8ec4f2997fb246878c34ecd6d122b7c6.png


调整坐标轴

ylim,xlim


0a2653c851af460fa595bd959398a8f1.png


axis:?plt.axis


对数坐标


0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png4cebaac233b3433da32a72337a77fc60.png


图例


0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png


修饰图例


2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png4cebaac233b3433da32a72337a77fc60.png


2.2 散点图


0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png




2.3 柱形图


4cebaac233b3433da32a72337a77fc60.png6de278e6d6694ce5bb08e7e842b7e74b.png


相关文章
|
2月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
49 1
|
3天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
11天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
35 5
|
15天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
35 5
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
Python量化炒股常用的Matplotlib包
Python量化炒股常用的Matplotlib包
|
1月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
78 3
|
28天前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
22 0
|
2月前
|
API Python
30天拿下Python之matplotlib模块
30天拿下Python之matplotlib模块
14 0
|
2月前
|
数据可视化 数据处理 Python
Matplotlib:Python绘图利器之王
Matplotlib:Python绘图利器之王
17 0