注意力机制BAM和CBAM详细解析(附代码)

简介: 注意力机制BAM和CBAM详细解析(附代码)
  • 论文题目①:BAM: Bottleneck Attention Module
  • 论文题目②:CBAM:CBAM: Convolutional Block Attention Module

Bottlenet attention Module(BAM)


依据


人看东西时不可能把注意力放在所有的图像上,会把焦点目光聚集在图像的重要物体上。因此,作者提出了BAM注意力机制,仿照人的眼睛聚焦在图像几个重要的点上。

BAM介绍


在这项工作中,我们把重心放在了Attention对于一般深度神经网络的影响上,我们提出了一个简单但是有效的Attention模型—BAM,它可以结合到任何前向传播卷积神经网络中,我们的模型通过两个分离的路径 channel和spatial, 得到一个Attention Map。

3235cf914ca73016c062ae61c151bb14.png

BAM具体结构


image.png

channel attention branch

image.png

spatial attention branch

image.png

两种attention的结合方式


由一系列的实验可得,element-wise summation即逐元素相加perform是最好的。最后再通过sigmoid函数。具体可以参照下图:

045899e8b6d90ed96b7cb57d7a39da62.png

Convolutional Block Attention Module(CBAM)


简介


作者提出了一个简单但有效的注意力模块 CBAM,给定一个中间特征图,我们沿着空间和通道两个维度依次推断出注意力权重,然后与原特征图相乘来对特征进行自适应调整。由于 CBAM 是一个轻量级的通用模块,它可以无缝地集成到任何 CNN 架构中,额外开销忽略不计,并且可以与基本 CNN 一起进行端到端的训练。在不同的分类和检测数据集上,将 CBAM 集成到不同的模型中后,模型的表现都有了一致的提升,展示了其广泛的可应用性。

CBAM总体视图


7572e09851ce68d317cc02783d1105b1.png

CBAM结构介绍


作者将注意力过程分为两个独立的部分,通道注意力模块和空间注意力模块。这样不仅可以节约参数和计算力,而且保证了其可以作为即插即用的模块集成到现有的网络架构中去。

通道注意力模块


特征的每一个通道都代表着一个专门的检测器,因此,通道注意力是关注什么样的特征是有意义的。为了汇总空间特征,作者采用了全局平均池化和最大池化两种方式来分别利用不同的信息。

image.png

输入是一个 H×W×C 的特征 F,我们先分别进行一个空间的全局平均池化和最大池化得到两个 1×1×C 的通道描述。接着,再将它们分别送入一个两层的神经网络,第一层神经元个数为 C/r,激活函数为 Relu,第二层神经元个数为 C。这个两层的神经网络是共享的。然后,再将得到的两个特征相加后经过一个 Sigmoid 激活函数得到权重系数 Mc。最后,拿权重系数和原来的特征 F 相乘即可得到缩放后的新特征。

空间注意力模块


在通道注意力模块之后,我们再引入空间注意力模块来关注哪里的特征是有意义的。

image.png

与通道注意力相似,给定一个 H×W×C 的特征 F‘,我们先分别进行一个通道维度的平均池化和最大池化得到两个 H×W×1 的通道描述,并将这两个描述按照通道拼接在一起。然后,经过一个 7×7 的卷积层,激活函数为 Sigmoid,得到权重系数 Ms。最后,拿权重系数和特征 F’ 相乘即可得到缩放后的新特征。

f989d47c9cf451679f71f91e9e76f289.png

两个注意力通道组合形式


通道注意力和空间注意力这两个模块可以以并行或者顺序的方式组合在一起,但是作者发现顺序组合并且将通道注意力放在前面可以取得更好的效果。

实验结果


CBAM与ResNet网络结构组合


ba97e93ff0de9a718dcaed73a2e2dd69.png

1e31f8c09bdb540ef24cecde19dd88d9.png

CBAM可视化


736b2fbe99d7fb108cd521f97f3a4e20.png

利用 Grad-CAM 对不同的网络进行可视化后,可以发现,引入 CBAM 后,特征覆盖到了待识别物体的更多部位,并且最终判别物体的概率也更高,这表明注意力机制的确让网络学会了关注重点信息。

BAM在目标检测


af33801a1fb52f25189e551290be06a7.png

结论(CBAM和BAM)


由上述及论文更多实验结果表明,不管是引入BAM还是引入CBAM都能提高目标检测和物体分类的精度,因此可以在神经网络中引入这一机制,而且花费的计算开销和参数大小都比较少。

代码解析及开源地址


https://github.com/Jongchan/attention-module

可对照着代码看注意力机制的详细过程,会有一个更好的理解。

相关文章
|
17小时前
|
PHP 项目管理 开发者
深入解析PHP的命名空间和自动加载机制
【4月更文挑战第4天】 在PHP的编程世界中,命名空间和自动加载机制是构建大型应用程序时不可或缺的工具。本文将深入探讨这两个概念,揭示它们如何简化代码结构、避免类名冲突以及提高代码维护性。通过对PHP命名空间的由来、作用域和使用方法的细致剖析,以及对自动加载机制工作原理和应用实践的全面讲解,读者将获得有效管理复杂项目中依赖关系的能力。
|
17小时前
|
消息中间件 Unix Linux
Linux进程间通信(IPC)介绍:详细解析IPC的执行流程、状态和通信机制
Linux进程间通信(IPC)介绍:详细解析IPC的执行流程、状态和通信机制
85 1
|
17小时前
|
存储 缓存 NoSQL
【Redis】Redis魔法:揭秘Key的自动消失术——过期删除机制解析
【Redis】Redis魔法:揭秘Key的自动消失术——过期删除机制解析
145 0
|
17小时前
|
存储 Java
ArrayList的初始化容量与扩容机制解析
ArrayList的初始化容量与扩容机制解析
|
17小时前
|
存储 机器学习/深度学习 搜索推荐
深入解析矢量数据库的数据模型与索引机制
【4月更文挑战第30天】本文深入探讨了矢量数据库的数据模型和索引机制。向量数据库以高维向量表示数据,采用稀疏或密集向量形式,并通过数据编码和组织优化存储与检索。索引机制包括基于树的(如KD-Tree和Ball Tree)、基于哈希的(LSH)和近似方法(PQ),加速相似性搜索。理解这些原理有助于利用矢量数据库处理大规模高维数据,应用于推荐系统、图像搜索等领域。随着技术发展,矢量数据库将扮演更重要角色。
|
17小时前
|
监控 Java
解析Java线程池的异常处理机制
该内容是一个关于Java线程和线程池异常处理的总结。提到的关键点包括: 1. 引用了滑动验证页面和相关文章资源。 2. 区分了`execute`与`submit`在处理线程异常时的区别,`submit`可能会捕获并隐藏异常,而`execute`会直接抛出。 3. 提供了处理线程和线程池异常的建议,如使用try/catch直接捕获,或者自定义线程工厂和未捕获异常处理器。 4. 示例代码展示了如何通过设置`UncaughtExceptionHandler`来监控和处理线程中的异常。 请注意,由于字符限制,这里只提供了简要摘要,详细解释和代码示例请参考原文。
24 3
|
17小时前
|
资源调度 算法 Linux
Linux进程/线程的调度机制介绍:详细解析Linux系统中进程/线程的调度优先级规则
Linux进程/线程的调度机制介绍:详细解析Linux系统中进程/线程的调度优先级规则
208 0
|
17小时前
|
PHP 开发者
深入解析PHP的命名空间与自动加载机制
【4月更文挑战第30天】 在现代PHP开发实践中,命名空间和自动加载机制是模块化和代码复用的关键。本文旨在提供一个全面的视角来理解这两个概念如何协同工作以优化项目结构。我们将探讨命名空间解决代码冲突的方式,以及自动加载机制如何智能地按需加载类,从而减少内存占用和提升性能。
|
17小时前
|
算法 安全 Linux
深度解析:Linux内核内存管理机制
【4月更文挑战第30天】 在操作系统领域,内存管理是核心功能之一,尤其对于多任务操作系统来说更是如此。本文将深入探讨Linux操作系统的内核内存管理机制,包括物理内存的分配与回收、虚拟内存的映射以及页面替换算法等关键技术。通过对这些技术的详细剖析,我们不仅能够理解操作系统如何高效地利用有限的硬件资源,还能领会到系统设计中的性能与复杂度之间的权衡。
|
17小时前
|
缓存 Java Python
Python 弱引用全解析:深入探讨对象引用机制!
Python 弱引用全解析:深入探讨对象引用机制!
22 3

推荐镜像

更多