为什么LSTM看起来那么复杂,以及如何避免时序数据的处理差异和混乱(二)

简介: 为什么LSTM看起来那么复杂,以及如何避免时序数据的处理差异和混乱(二)

数据结构

在我们决定了为LSTM准备数据的正确顺序之后,我们需要选择使用哪种合适的数据结构。数据结构大致可以分为以下三种:

  • Pandas DataFrame
  • Numpy Arrays
  • Lists

Pandas  DataFrame

Pandas 是一个可靠的且便于操作的数据处理库。而我们在编写人工智能算法时,总是需要在进程的任何一步检查数据以便于调试。在 Pandas 库中可以很方便地做到这一点:

df.head()

image.png

Pandas 示例:谷歌股票

通过 Pandas 可以打印出数据情况,以检查在程序运行过程中是否出现错误。

image.png

Pandas 示例:一个模拟有监督学习问题的pandas dataframe

相比较而言, List 则具有多维度、不易于理解的缺点,对于调试工作不太友好。

Numpy Arrays

所有数据集或多或少都会转换为 NumPy Arrays 以进行编辑或缩放操作。例如,如果我们希望在0和1之间缩放数据集,可以使用名为MinMaxScaler的工具:

from sklearn.preprocessing import MinMaxScaler
#df is pandas DataFrame
#conversion to numpy array
df = df.Values
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_values = scaler.fit_transform(df)

将整个数据集作为NumPy Array 的问题在于,无法详细查看其中的内容。不能够以列名称的方式查看数据(将数据集转换为有监督的学习问题时,这一点非常重要)。并且对于算法的调试工作不够友好。

幸运的是,可以轻松地从NumPy Arrays 切换回 DataFrame。

Lists

将数据集的内容存储在多维列表中是十分低效的。以 Kaggle 上发表的一段代码为例:

z.png

List 示例:一个四维的时间序列数据存储

不难发现,通过 Lists 难以直接定位数据并查看数据,并且不能够通过列名称的方式组织数据。

总结

规范化这个问题并不局限于LSTM,但是在 LSTM 编程过程中十分普遍。缺乏规范化导致在实际编程中,不能够直接一个接一个地调用程序或函数。

axx.png

现有的情况下,代码看起来可能很简单而且很快,但是搜索错误、调试代码是个很大的问题。在函数声明过程中,输入数据的名称可能会更改,因此当想要检查隐藏在代码中的变量的值或输出时,往往不能简单地调用原始的数据名称,必须使用它所涉及到的所有代码才能提取该数据的真实值。

ax.png

这就是本文推荐使用统一的数据框架的原因。通过统一使用 Pandas Dataframe,可以轻松地检查每个函数地输出,更好地进行算法调试工作。

deephub 小组经验

基本上所有的所有的编程语言的数字下标都是从0开始的,这就使得我们在处理序列数据的时候需要改掉以 1为起始的现实中的习惯。并且在python处理分片的时候使用的是左闭右开(绝大部分,并不是全部)的原则,这也是导致了我们对时序数组的操作需要特别的注意。

实际案例:LSTM需要通过前30天的数据,预测当天的数据,处理输入数据的数组下标如何写,有兴趣的小伙伴可以手动试试。

目录
相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
7月前
|
机器学习/深度学习 数据挖掘 网络架构
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
|
7月前
|
机器学习/深度学习 算法 算法框架/工具
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
|
6月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
116 6
|
6月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码1
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码
|
7月前
|
机器学习/深度学习 数据可视化 网络架构
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
|
7月前
|
机器学习/深度学习 算法框架/工具
数据分享|R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据
数据分享|R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据
|
7月前
|
机器学习/深度学习 存储 数据可视化
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码2
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码
|
7月前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码

热门文章

最新文章