Mysql进阶优化篇03——多表查询的优化

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 文章目录1.数据准备2. 采用左外连接3.采用内连接

1.数据准备

创建type表

CREATE TABLE IF NOT EXISTS `type` (
`id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`id`)
);

创建book

CREATE TABLE IF NOT EXISTS `book` (
`bookid` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
`card` INT(10) UNSIGNED NOT NULL,
PRIMARY KEY (`bookid`)
);

在type表中执行20次如下数据,插入20条数据。

INSERT INTO TYPE(card) VALUES(FLOOR(1 + RAND() * 20));
• 1

同样的,在book表中插入20条数据。

INSERT INTO book(card) VALUES(FLOOR(1 + RAND() * 20));
• 1


2. 采用左外连接


我们知道多表查询分为外连接和内连接,而外连接又分为左外连接,右外连接和满外连接。其中外连接中,左外连接与右外连接可以通过交换表来相互改造,其原理也是类似的,而满外连接无非是二者的一个综合,因此外连接我们只介绍左外连接的优化即可。

执行左外连接操作

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

执行结果如下。在上面的查询sql中,type表是驱动表,book表是被驱动表。在执行查询时,会先查找驱动表中符合条件的数据,再根据驱动表查询到的数据在被驱动表中根据匹配条件查找对应的数据。因此被驱动表嵌套查询的次数是20*20=400次。实际上,由于我们总是需要在被驱动表中进行查询,优化器帮我们已经做了优化,上面的查询结果中可以看到,使用了join buffer,将数据缓存起来,提高检索的速度。


为了提高外连接的性能,我们添加下索引

CREATE INDEX Y ON book(card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

对于外层表来说,虽然其查询仍然是全表扫描,但是因为是左外连接,LEFT JOIN左边的表的数据无论是否满足条件都会保留,因此全表扫描也是不赖的。

我们当然也可以给type表建立索引

CREATE INDEX X ON `type`(card); #【驱动表】,无法避免全表扫描
# ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

结果如下注意,外连接的关联条件中,两个关联字段的类型、字符集一定要保持一致,否则索引会失效哦。


删除索引Y,再查询。

DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

结果如下。book表使用join buffer,再次验证了左外连接左边的表是驱动表,右边的表是被驱动表,后面我们将与内连接在这一点进行对比。

3.采用内连接

删除现有的索引。

drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)

执行内连接。

EXPLAIN  SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

结果如下

下面在book表中添加索引再执行查询。

ALTER  TABLE book ADD INDEX Y ( card);
EXPLAIN  SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

结果如下。

再给type加个索引

ALTER  TABLE type ADD INDEX X (card);
EXPLAIN  SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

执行结果如下。

您发现了吗?上面的两次查询中,第一次是使用type作为驱动表,book作为被驱动表。而第二次是使用book作为驱动表,type作为被驱动表。

删除被驱动表的索引。

DROP INDEX X ON `type`;
EXPLAIN  SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;

又反转了。这是因为内连接优化器可以决定驱动表。在只有一个表存在索引的情况下,会选择存在索引的表作为被驱动表(因为被驱动表查询次数更多)。

再加上索引

ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

执行结果如下。又翻转了。再在book表中添加三条数据,使book表的数据多于type表。


INSERT INTO book(card) VALUES(FLOOR(1 + RAND() * 20));
INSERT INTO book(card) VALUES(FLOOR(1 + RAND() * 20));
INSERT INTO book(card) VALUES(FLOOR(1 + RAND() * 20));

结果又翻转了。

在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表(大表全表扫描代价更大)。“小表驱动大表”。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
4
分享
相关文章
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
628 9
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
109 22
MySQL底层概述—8.JOIN排序索引优化
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
127 15
MySQL底层概述—7.优化原则及慢查询
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
50 9
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
108 9
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
71 23