数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Pandas—pandas入门(二)

简介: 你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,

1.3 数据输入和输出

1.3.1 csv

🚩我们想要存储数据,首先要创建数据:

import numpy as np
import pandas as pd
# 薪资情况:
df = pd.DataFrame(data = np.random.randint(0, 50, size = (50, 5)),
                  columns = ['IT', '化工', '生物', '教师', '士兵'])
display(df)

image.png

import numpy as np
import pandas as pd
# 薪资情况:
df = pd.DataFrame(data = np.random.randint(0, 50, size = (50, 5)),
                  columns = ['IT', '化工', '生物', '教师', '士兵'])
display(df)
# 保存到当前路径下,文件名是:salary.csv
df.to_csv('./salary.csv',
         sep = ';',        # 文本分隔符,默认是逗号
         header = True,    # 是否保存列索引
         index = True)     # 是否保存行索引
# 保存行索引,文件被加载时,默认行索引会作为一列

1.png

点击该文件就可以查看保存的数据信息:

2.png

能保存数据自然就有加载数据的操作:

pd.read_csv('./salary.csv',
           sep = ';',      # 默认是逗号
           header = [0],   # 指定列索引
           index_col = 0)  # 指定行索引

image.png

1.3.2 Excel

🚩如果要保存为 Excel 文件,我们需要装两个库:

pip install xlrd -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install xlwt -i https://pypi.tuna.tsinghua.edu.cn/simple

按下 Windows + R,输入 cmd,然后输入上述两行,如果你曾跟着NumPy从入门到进阶进行学习,这一步可以省略

import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0, 50, size = [50,5]), # 薪资情况
                   columns = ['IT', '化工', '生物', '教师', '士兵'])
# 保存到当前路径下,文件命名是:salary.xlsx
df1.to_excel('./salary.xlsx',
            sheet_name = 'salary',# Excel中工作表的名字
            header = True,        # 是否保存列索引
            index = False)        # 是否保存行索引

这样我们就保存了 df1 的数据,并把文件存到了当前目录下:

5.png

注意这个文件我们在 jupyter 上是无法打开的,但是我们可以在文件管理中找到并打开:

6.png

接下来我们来读取这个文件:

pd.read_excel('./salary.xlsx',
              sheet_name = 0,   # 读取哪一个Excel中工作表,默认第一个
              header = 0)       # 使用第一行数据作为列索引


image.png

我们还可以替换列索引,比如我们把列索引替换为 ABCDE

pd.read_excel('./salary.xlsx',
              sheet_name = 0,  # 读取哪一个Excel中工作表,默认第一个
              header = 0,      # 使用第一行数据作为列索引
              names = list('ABCDE'))# 替换列索引

image.png

我们还可以指定行索引:

pd.read_excel('./salary.xlsx',
              sheet_name = 0,  # 读取哪一个Excel中工作表,默认第一个
              header = 0,      # 使用第一行数据作为列索引
              names = list('ABCDE'),
              index_col = 1)   # 替换列索引,index_col = 1 代表B作为行索引
# 感兴趣的读者可以自己运行一下:0 和 3
# index_col = 0 代表A作为行索引
# index_col = 3 代表D作为行索引

image.png

我们打开我们的 Excel 表格:

image.png

可以看到只有一个工作表,我们如果现在想再创建一个工作表用来存储其他数据,可以按下述操作:

# 创建一组新的数据:
# 计算机科目的考试成绩
df2 = pd.DataFrame(data = np.random.randint(0, 50, size = [150, 3]),
                   columns=['Python', 'Tensorflow', 'Keras'])
df2.to_excel('./salary.xlsx',
            sheet_name = 'test',# Excel中工作表的名字
            header = True,# 是否保存列索引
            index = False) # 是否保存行索引,保存行索引

我们再来查看一下我们的文件:

8.png

发现并没有实现我们预期的结果,下面来正式介绍一下如何操作:

# 一个Excel文件中保存多个工作表
with pd.ExcelWriter('./data.xlsx') as writer:
    df1.to_excel(writer,sheet_name = 'salary', index = False)
    df2.to_excel(writer,sheet_name = 'score', index = False)

9.png

这样就实现了我们的存入操作,接下来还是读取的操作:

读取 salary:

pd.read_excel('./data.xlsx',
              sheet_name='salary') # 读取Excel中指定名字的工作表 

image.png

读取 score:

pd.read_excel('./data.xlsx',
              sheet_name='score') # 读取Excel中指定名字的工作表 

image.png


目录
相关文章
|
20天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
51 0
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
33 2
|
12天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
12天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
82 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
184 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
87 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
14天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
29 2
|
2月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
59 5

热门文章

最新文章

下一篇
无影云桌面