尊敬的用户,由于账号管理过于分散,我们在阿里云平台的账号暂时停止更新了。如您对我们的内容感兴趣,欢迎关注我们的微信公众号AutoMQ,我们将在那里继续为您提供精彩的内容和最新的资讯。感谢您的理解与支持!
AutoMQ vs Kafka: 来自小红书的独立深度评测与对比
本文由北京宝兰德公司解决方案总监徐清康撰写,探讨了Kafka和AutoMQ集群的监控。
立方体文件系统(CubeFS)是一个云原生存储解决方案,现为CNCF孵化项目,支持S3、POSIX、HDFS等协议,提供多租户、多AZ部署和跨区域复制等功能,适用于大数据、AI、容器平台等场景。要部署AutoMQ集群,需先准备CubeFS集群,启用对象网关,创建用户并配置S3接口,然后创建Bucket。接着,下载AutoMQ二进制包,使用S3 URL生成器配置并启动集群,确保所有主机在同一网络并配置正确端口。启动时,先启动控制器,再启动Broker节点。注意,部署在私有数据中心时,需考虑SSD的可靠性,可能需要RAID配置。
Kafka 3.3.1 引入了 KRaft 元数据管理组件,替代 Zookeeper,以简化集群一致性维护,支持更大规模集群并减轻运维复杂性。在 Zookeeper 模式下,需同时运维 ZK 和 Broker,而 KRaft 模式仅需 3 个节点即可构成最小生产集群,且通信协调基于 Raft 协议,增强了一致性。KRaft 模式中,Controller 使用单线程处理请求,通过 KRaft 保持内存状态与多节点一致性。此外,Broker 根据 KRaft 记录更新元数据,实现声明式管理,提高集群协调效率。KRaft 的引入是集群协调机制的演进,采用事件驱动模型实现元数据的一致性。
AutoMQ Kafka 优化设计,充分利用云基础设施,尤其是成本低廉的Spot实例,实现公有云成本节约。尽管Spot实例的不确定性可能导致服务中断,AutoMQ通过Broker无状态化、快速弹性扩展和Serverless支持,以及应对Spot实例回收的优雅停机和容灾机制,确保了可靠的Kafka服务。混合使用按需实例以保证关键服务稳定,同时在面临Spot实例库存不足时,具备回退到按需实例的能力。AutoMQ Kafka通过创新技术在稳定性与成本之间找到了平衡,为用户提供灵活且经济高效的解决方案。
AutoMQ,新一代云原生 Kafka,解决原 Kafka 的迁移复制低效、弹性不足和高成本问题。本文探讨 Kafka 的冷读(追赶读)副作用,如硬盘 I/O 争抢、Page Cache 污染和 Zero Copy 阻塞。Kafka 的冷读依赖本地存储,导致性能瓶颈。AutoMQ 通过对象存储实现冷热隔离,避免 I/O 争抢;自主管理内存,减少 Page Cache 污染;异步 I/O 响应网络层,提高效率。此外,AutoMQ 优化冷读性能,确保批处理和故障恢复时的高效运行。
AutoMQ在2024年3-4月推出企业版服务,现已上线阿里云和AWS中国区云市场,用户可自助开通。支持按小时和包年包月付费,以及订阅许可证模式,实现跨IDC环境交付。企业版提供同城3AZ容灾集群,确保服务高可用。此外,还推出了Kafka全托管迁移工具和集群自助版本升级功能,保障平滑迁移和无缝升级。详情见参考资料。AutoMQ团队由Apache RocketMQ和Linux LVS核心成员组成,致力于提供成本优化和高效弹性的消息队列服务。
本文介绍了Apache Kafka 3.7的Producer使用及原理,讲解了如何创建和使用Producer,展示了一个发送消息的示例代码,并介绍了ProducerRecord和Callback接口。ProducerRecord包含topic、partition等属性,Callback用于发送消息后的回调处理。接着阐述了send、flush和close方法的功能。文章还探讨了核心组件,包括ProducerMetadata、RecordAccumulator、Sender和TransactionManager,以及消息发送流程。最后,讨论了元数据刷新、分区选择、消息攒批和超时处理等实现细节。
AutoMQ是云原生Kafka实现,采用共享存储架构,与阿里云合作利用OSS、ESSD、ESS和抢占式实例降低成本,实现10倍于Apache Kafka的性价比,并提供自动弹性。它使用对象存储OSS实现流式数据高效读取,通过ESSD作为WAL保证性能,弹性伸缩服务ESS简化交付,抢占式实例降低成本。此外,AutoMQ利用ECS的高可用性和ESSD的高性能存储,结合NVMe协议和多重挂载技术,实现快速故障恢复和低成本运维。该系统旨在充分利用云原生能力,推动消息和流存储服务进步。
Apache Kafka,作为流处理领域的标杆,面临云环境下的挑战,如高存储成本、运维复杂性和性能瓶颈。传统的本地磁盘Shared Nothing架构导致这些问题,而分层存储仅部分缓解,未根本解决问题。直接写入S3虽降低成本,但牺牲了延迟。为解决这些痛点,提出了创新的共享存储架构,通过EBS+S3实现存算分离,保持低延迟并提高弹性,同时降低成本和运维复杂性。该架构将EBS视为共享存储,实现Broker与存储的解耦,确保在云时代引领流处理系统的发展。
Apache Kafka的Exactly-Once语义确保了消息处理的准确性和一致性。通过幂等性和事务消息,Kafka实现了要么全处理要么全不处理的原子性。文章详细解析了Kafka事务的工作流程,包括生产者的幂等性(通过序列号保证),以及事务消息的提交和回滚过程。Kafka事务提供了ACID保证,但存在性能限制,如额外的RPC请求和单生产者只能执行一个事务。此外,事务适用于同集群内的操作,跨集群时原子性无法保证。了解这些原理有助于开发者更好地利用Kafka事务构建可靠的数据处理系统。
MirrorMaker2 (MM2) 是 Kafka 从 2.4.0 开始提供的数据复制工具,用于集群间的数据同步和备份。MM2 有三种部署模式:dedicated mode、standalone mode 和 Kafka Connect mode。AutoMQ即将推出基于MM2的迁移产品,助力用户平滑迁移到AutoMQ平台。
AutoMQ是基于S3 Stream的Apache Kafka云原生解决方案,利用云盘和对象存储实现低延迟、高吞吐、低成本流式存储。Delta WAL是其核心组件,作为持久化写入缓冲区,先在云盘上做高效持久化,再上传至对象存储。Delta WAL采用Direct IO在裸设备上读写,避免Page Cache污染,提高写入性能,加快宕机恢复速度。设计目标包括轮转写入、充分利用云盘性能和快速恢复。其写入和恢复流程涉及WALHeader、RecordHeader和SlidingWindow数据结构。基准测试显示,Delta WAL能充分利用云盘资源,实现高吞吐和低延迟。
Apache Kafka的单分区写入性能在某些严格保序场景中至关重要,但其现有线程模型限制了性能发挥。本文分析了Kafka的串行处理模型,包括SocketServer、KafkaChannel、RequestChannel等组件,指出其通过KafkaChannel状态机确保请求顺序处理,导致处理效率低下。AutoMQ提出流水线处理模型,简化KafkaChannel状态机,实现网络解析、校验定序和持久化的阶段间并行化,提高处理效率。测试结果显示,AutoMQ的极限吞吐是Kafka的2倍,P99延迟降低至11ms。
AutoMQ致力于打造下一代云原生Kafka系统,解决Kafka痛点。本文深入解析Kafka Consumer与Broker的交互机制,涉及消费者角色、核心组件及常用接口。消费者以group形式工作,包括leader和follower。交互流程涵盖FindCoordinator、JoinGroup、SyncGroup、拉取消息和退出过程。文章还探讨了broker的consumer group状态管理和rebalance原理。AutoMQ团队分享Kafka技术,感兴趣的话可以关注他们。
Apache Kafka的分区迁移通常需要大量数据同步,耗时较长,但在AutoMQ中,由于存算分离架构,迁移时间缩短至秒级。本文深入解析了AutoMQ秒级迁移的原理和源码,包括构建迁移命令、Broker同步变更、元数据持久化、数据上传、选主以及数据恢复等六个步骤。这种高效迁移能力适用于高峰期快速扩容和Serverless按需扩容场景,提升了系统的弹性和运维效率。AutoMQ由Apache RocketMQ和Linux LVS团队创建,旨在提供成本优化和高弹性消息队列服务。
新一年, AutoMQ 首场线下活动重磅来袭!2024年3月9日,由 AutoMQ 与阿里云联合举办的云原生创新论坛将于杭州与大家见面,双方联合重磅发布新一代云原生 Kafka ——AutoMQ On-Prem 版本 !现场将会分享如何通过云原生和存算分离架构实现 Kafka 产品的10倍成本优化,并保持秒级分区无损迁移。另外,活动现场还有来自得物的技术专家分享 AutoMQ 在生产场景中的应用实践,以及阿里云的资深专家为大家剖析多 AZ 块存储的原理。