暂时未有相关云产品技术能力~
人工智能领域爱好者
基于PP-PicoDet行车检测(完成安卓端部署)_哔哩哔哩_bilibili基于视觉深度学习的自动驾驶场景,旨在对车载摄像头采集的视频数据进行道路场景解析(行车检测),为自动驾驶提供一种解决思路。该项目使用bdd100k_car数据集训练,并完成了安卓部署。现如今,汽车在日益普及人们的生活,再给人们带来极大便利的同时也造成了拥堵的交通更为频发的交通事故。通过行车检测不仅能够更好的帮助司机检查路况,并且还能够更好的规化当前的路程管理,减轻道路的拥堵情况。 在车辆驾驶中主要考验的是司机如何应对其他行驶车辆的可
该项目着眼于基于视觉深度学习的自动驾驶场景,旨在对车载摄像头采集的视频数据进行道路场景解析,为自动驾驶提供一种解决思路。利用YOLO系列模型PP_YOLOE+完成车辆检测实现一种高效高精度的道路场景解析方式,从而实现真正意义上的自动驾驶,减少交通事故的发生,保障车主的人身安全。数据集地址视频数据: 超过1,100小时的100000个高清视频序列在一天中许多不同的时间,天气条件,和驾驶场景驾驶经验。视频序列还包括GPS位置、IMU数据和时间戳。道路目标检测。
经典目标检测和最新目标跟踪都用到了RPN(region proposal network),锚框(anchor)是RPN的基础,感受野(receptive field, RF)是anchor的基础。本文介绍感受野及其计算方法,和有效感受野概念。同时也向大家补充特征图的相关知识~
以下是最新更新的 CVPR 2022 论文,包括的研究方向有:目标检测、预训练语言模型、Transformer、图像修复、模型训练、视觉语言表征学习、对比学习、深度估计、语义分割、动作检测、人脸防伪、长尾识别、神经网络架构设计、异常检测、三维视觉、姿态估计、机器人等66篇最新录用论文信息。● 论文摘要:提出了一种新的无监督活动分割方法,它使用视频帧聚类作为前置任务,同时执行表示学习和在线聚类。这与通常按顺序执行表示学习和聚类的先前工作形成对比。作者通过采用时间最优传输来利用视频中的时间信息,将保留活动时间顺
python使用过程中for循环的详细用法。教会你深度理解python中的for循环
Chromedriver的快速安装教程,使用python库selenium的必备步骤。无需翻墙,不是翻墙。大部分爬虫需要用到
Ultralytics YOLOv8 是由 Ultralytics开发的一个前沿 SOTA 模型。它在以前 YOLO 版本的成功基础上,引入了新的功能和改进,进一步提升了性能和灵活性。YOLOv8 基于快速、准确和易于使用的理念设计,使其成为广泛的物体检测、图像分割和图像分类任务的绝佳选择。
再讲语义特征之前,先将语义的概念讲一下。那么什么是语义呢?数据的含义就是语义(semantic)。简单来说,数据就是符号。数据本身没有任何意义,只有被赋予含义的数据才能够被使用,否则就是一堆没用的数字或载体。这时候,被赋予含义的数据就转化为了信息,而转化为信息的数据便是语义,即数据的含义就是语义。语义可以简单地看作是数据所对应的现实世界中的事物所代表的概念的含义,以及这些含义之间的关系,是数据在某个领域上的解释和逻辑表示。在计算机视觉中,大家经常会提起图像的语义信息以及图像的高层特征和底层特征。
本篇文章基于上一篇波士顿房价预测基础案例改写,使用百度飞桨的paddle来进行实现波士顿房价的预测,同时会对比使用paddle框架和不使用框架的区别。
机器学习入门的”Hello World“,学习机器学习的必备案例,通过这篇文章,我们将会讲解基于numpy的波士顿房价预测是怎样实现的。同时我也会在这篇文章中边讲基础边实现,有兴趣的小伙伴多多支持~