能力说明:
掌握计算机基础知识,初步了解Linux系统特性、安装步骤以及基本命令和操作;具备计算机基础网络知识与数据通信基础知识。
暂无个人介绍
在笔者前一篇文章`《驱动开发:内核文件读写系列函数》`简单的介绍了内核中如何对文件进行基本的读写操作,本章我们将实现内核下遍历文件或目录这一功能,该功能的实现需要依赖于`ZwQueryDirectoryFile`这个内核API函数来实现,该函数可返回给定文件句柄指定的目录中文件的各种信息,此类信息会保存在`PFILE_BOTH_DIR_INFORMATION`结构下,通过遍历该目录即可获取到文件的详细参数,如下将具体分析并实现遍历目录功能。
在应用层下的文件操作只需要调用微软应用层下的`API`函数及`C库`标准函数即可,而如果在内核中读写文件则应用层的API显然是无法被使用的,内核层需要使用内核专有API,某些应用层下的API只需要增加Zw开头即可在内核中使用,例如本章要讲解的文件与目录操作相关函数,多数ARK反内核工具都具有对文件的管理功能,实现对文件或目录的基本操作功能也是非常有必要的。
WFP框架是微软推出来替代TDIHOOK传输层驱动接口网络通信的方案,其默认被设计为分层结构,该框架分别提供了用户态与内核态相同的AIP函数,在两种模式下均可以开发防火墙产品,以下代码我实现了一个简单的驱动过滤防火墙。 WFP 框架分为两大层次模块,用户态基础过滤引擎`BFE (BaseFilteringEngine)` ,以及内核态过滤引擎 `KMFE (KMFilteringEngine)`,基础过滤引擎对上提供C语言调用方式的API以及RPC接口,这些接口都被封装在`FWPUCLNT.dll`模块中,开发时可以调用该模块中的导出函数.
在笔者上篇文章`《驱动开发:内核扫描SSDT挂钩状态》`中简单介绍了如何扫描被挂钩的SSDT函数,并简单介绍了如何解析导出表,本章将继续延申PE导出表的解析,实现一系列灵活的解析如通过传入函数名解析出函数的RVA偏移,ID索引,Index下标等参数,并将其封装为可直接使用的函数,以在后期需要时可以被直接引用,同样为了节约篇幅本章中的`LoadKernelFile()`内存映射函数如需要使用请去前一篇文章中自行摘取。
在笔者上一篇文章`《驱动开发:内核实现SSDT挂钩与摘钩》`中介绍了如何对`SSDT`函数进行`Hook`挂钩与摘钩的,本章将继续实现一个新功能,如何`检测SSDT`函数是否挂钩,要实现检测`挂钩状态`有两种方式,第一种方式则是类似于`《驱动开发:摘除InlineHook内核钩子》`文章中所演示的通过读取函数的前16个字节与`原始字节`做对比来判断挂钩状态,另一种方式则是通过对比函数的`当前地址`与`起源地址`进行判断,为了提高检测准确性本章将采用两种方式混合检测。
在前面的文章`《驱动开发:内核解析PE结构导出表》`中我们封装了两个函数`KernelMapFile()`函数可用来读取内核文件,`GetAddressFromFunction()`函数可用来在导出表中寻找指定函数的导出地址,本章将以此为基础实现对特定`SSDT`函数的`Hook`挂钩操作,与`《驱动开发:内核层InlineHook挂钩函数》`所使用的挂钩技术基本一致,不同点是前者使用了`CR3`的方式改写内存,而今天所讲的是通过`MDL映射`实现,此外前者挂钩中所取到的地址是通过`GetProcessAddress()`取到的动态地址,而今天所使用的方式是通过读取导出表寻找。
本章将继续探索内核中解析PE文件的相关内容,PE文件中FOA与VA,RVA之间的转换也是很重要的,所谓的FOA是文件中的地址,VA则是内存装入后的虚拟地址,RVA是内存基址与当前地址的相对偏移,本章还是需要用到`《驱动开发:内核解析PE结构导出表》`中所封装的`KernelMapFile()`映射函数,在映射后对其PE格式进行相应的解析,并实现转换函数。
在笔者上一篇文章`《驱动开发:内核解析PE结构导出表》`介绍了如何解析内存导出表结构,本章将继续延申实现解析PE结构的PE头,PE节表等数据,总体而言内核中解析PE结构与应用层没什么不同,在上一篇文章中`LyShark`封装实现了`KernelMapFile()`内存映射函数,在之后的章节中这个函数会被多次用到,为了减少代码冗余,后期文章只列出重要部分,读者可以自行去前面的文章中寻找特定的片段。
在笔者的上一篇文章`《驱动开发:内核特征码扫描PE代码段》`中`LyShark`带大家通过封装好的`LySharkToolsUtilKernelBase`函数实现了动态获取内核模块基址,并通过`ntimage.h`头文件中提供的系列函数解析了指定内核模块的`PE节表`参数,本章将继续延申这个话题,实现对PE文件导出表的解析任务,导出表无法动态获取,解析导出表则必须读入内核模块到内存才可继续解析,所以我们需要分两步走,首先读入内核磁盘文件到内存,然后再通过`ntimage.h`中的系列函数解析即可。
如前所述,在前几章内容中笔者简单介绍了`内存读写`的基本实现方式,这其中包括了`CR3切换`读写,`MDL映射`读写,`内存拷贝`读写,本章将在如前所述的读写函数进一步封装,并以此来实现驱动读写内存浮点数的目的。内存`浮点数`的读写依赖于`读写内存字节`的实现,因为浮点数本质上也可以看作是一个字节集,对于`单精度浮点数`来说这个字节集列表是4字节,而对于`双精度浮点数`,此列表长度则为8字节。
当今操作系统普遍采用64位架构,CPU最大寻址能力虽然达到了64位,但其实仅仅只是用到了48位进行寻址,其内存管理采用了`9-9-9-9-12`的分页模式,`9-9-9-9-12`分页表示物理地址拥有四级页表,微软将这四级依次命名为PXE、PPE、PDE、PTE这四项。关于内存管理和分页模式,不同的操作系统和体系结构可能会有略微不同的实现方式。9-9-9-9-12的分页模式是一种常见的分页方案,其中物理地址被分成四级页表:PXE(Page Directory Pointer Table Entry)、PPE(Page Directory Entry)、PDE(Page Table Entry)
在笔者上一篇文章`《驱动开发:内核MDL读写进程内存》`简单介绍了如何通过MDL映射的方式实现进程读写操作,本章将通过如上案例实现远程进程反汇编功能,此类功能也是ARK工具中最常见的功能之一,通常此类功能的实现分为两部分,内核部分只负责读写字节集,应用层部分则配合反汇编引擎对字节集进行解码,此处我们将运用`capstone`引擎实现这个功能。
在前面的文章`《驱动开发:运用MDL映射实现多次通信》`LyShark教大家使用`MDL`的方式灵活的实现了内核态多次输出结构体的效果,但是此种方法并不推荐大家使用原因很简单首先内核空间比较宝贵,其次内核里面不能分配太大且每次传出的结构体最大不能超过`1024`个,而最终这些内存由于无法得到更好的释放从而导致坏堆的产生,这样的程序显然是无法在生产环境中使用的,如下`LyShark`将教大家通过在应用层申请空间来实现同等效果,此类传递方式也是多数ARK反内核工具中最常采用的一种。
在开始学习内核内存读写篇之前,我们先来实现一个简单的内存分配销毁堆的功能,在内核空间内用户依然可以动态的申请与销毁一段可控的堆空间,一般而言内核中提供了`ZwAllocateVirtualMemory`这个函数用于专门分配虚拟空间,而与之相对应的则是`ZwFreeVirtualMemory`此函数则用于销毁堆内存,当我们需要分配内核空间时往往需要切换到对端进程栈上再进行操作,接下来`LyShark`将从API开始介绍如何运用这两个函数实现内存分配与使用,并以此来作为驱动读写篇的入门知识。
在前几篇文章中`LyShark`通过多种方式实现了驱动程序与应用层之间的通信,这其中就包括了通过运用`SystemBuf`缓冲区通信,运用`ReadFile`读写通信,运用`PIPE`管道通信,以及运用`ASYNC`反向通信,这些通信方式在应对`一收一发`模式的时候效率极高,但往往我们需要实现一次性吐出多种数据,例如ARK工具中当我们枚举内核模块时,往往应用层例程中可以返回几条甚至是几十条结果,如下案例所示,这对于开发一款ARK反内核工具是必须要有的功能。
本章将继续探索驱动开发中的基础部分,定时器在内核中同样很常用,在内核中定时器可以使用两种,即IO定时器,以及DPC定时器,一般来说IO定时器是DDK中提供的一种,该定时器可以为间隔为N秒做定时,但如果要实现毫秒级别间隔,微秒级别间隔,就需要用到DPC定时器,如果是秒级定时其两者基本上无任何差异,本章将简单介绍`IO/DPC`这两种定时器的使用技巧。
本章将探索驱动程序开发的基础部分,了解驱动对象`DRIVER_OBJECT`结构体的定义,一般来说驱动程序`DriverEntry`入口处都会存在这样一个驱动对象,该对象内所包含的就是当前所加载驱动自身的一些详细参数,例如驱动大小,驱动标志,驱动名,驱动节等等,每一个驱动程序都会存在这样的一个结构。
Boost 利用ASIO框架实现一个跨平台的反向远控程序,该远控支持保存套接字,当有套接字连入时,自动存储到map容器,当客户下线时自动从map容器中移除,当我们需要与特定客户端通信时,只需要指定客户端ID号即可。
在正式开始驱动开发之前,需要自行搭建驱动开发的必要环境,首先我们需要安装`Visual Studio 2013`这款功能强大的程序开发工具,在课件内请双击`ISO`文件并运行内部的`vs_ultimate.exe`安装包,`Visual Studio`的安装非常的简单,您只需要按照提示全部选择默认参数即可,根据机器配置不同可能需要等待一段时间;
LVS即Linux虚拟服务器,目前 LVS 已经被集成到 Linux 内核模块中,该项目在 Linux 内核实现了基于 IP 的数据请求负载均衡调度方案,LVS集群采用IP负载均衡技术和基于内容请求分发技术.调度器具有很好的吞吐率,将请求均衡地转移到不同的服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能的、高可用的虚拟服务器.整个服务器集群的结构对客户是透明的,而且无需修改客户端和服务器端的程序.为此,在设计时需要考虑系统的透明性、可伸缩性、高可用性和易管理性.
Keepalived的作用是检测服务器的状态,如果有一台web服务器宕机或工作出现故障,Keepalived将检测到,并将有故障的服务器从系统中剔除,同时使用其他服务器代替该服务器的工作,当服务器工作正常后Keepalived自动将服务器加入到服务器群中,这些工作全部自动完成,不需要人工干涉,需要人工做的只是修复故障的服务器.
SMB服务消息块协议,指在解决局域网内的文件或打印机等资源的共享问题,这也使得在多个主机之间共享文件变得越来越简单.到了1991年,当时还在读大学的Tridgwell为了解决Linux系统与Windows系统的文件共享问题,基于SMB协议,开发出了SMBServer服务程序,后来由于名称冲突,改名为Samba,而如今Samba服务已经成为了,Linux系统与Windows系统之间数据传输的最佳选择.
NFS 网络文件系统,是一种使用于分布式文件系统的协议,功能是通过网络让不同的机器,不同的操作系统能够彼此分享各自的数据,让应用程序在客户端通过网络访问位于服务器磁盘中的数据,是在类Unix系统间实现磁盘文件共享的一种方法。
Kickstart 是一种无人值守系统安装方式,其工作原理是预先把原本需要运维人员手工填写的参数保存成文件,当安装过程中需要填写参数时则自动匹配Kickstart生成的文件,所以只要文件内包含了安装过程中需要人工填写的所有参数,那么就完全不需要运维人员的干预,可自动完成安装工作。
ExtMail套件用于提供从浏览器中登录、使用邮件系统的Web操作界面,而Extman套件用于提供从浏览器中管理邮件系统的Web操作界面。它以GPL版权释出,设计初衷是希望设计一个适应当前高速发展的IT应用环境,满足用户多变的需求,能快速进行开发、改进和升级,适应能力强的webmail系统。
在Centos7系列系统下,配置Apache服务器,给服务器增加SSL证书功能,让页面访问是不再提示不安全,具体操作流程如下。
文件共享服务在Linux系统上有多种方式,最常用的有Samba,vsftp,iSCSI,NFS这四种方式,如下将分别配置四种不同的文件共享服务.
地址重写有利于SEO优化,开启地址重写可以去掉Typecho框架中的index.php后缀,该后缀如下。
实现在应用层下遍历输出驱动文件路径列表信息。
输出特定进程所在位置的完整路径,并输出路径。
首先声明`.text`区段的起始地址是需要计算的,无论是哪个结构体里都不会直接提供某个区段的直接地址(虚拟内存地址),我就是因为想偷懒所以翻了好久的结构体成员列表,结果头都翻炸了还是没找到。
全局 Hook 不一定需要用到 Dll ,比如全局的鼠标钩子、键盘钩子都是不需要 Dll 的,但是要钩住 API,就需要 Dll 的协助了,下面直接放上 Dll 的代码,注意这里使用的是 MFC DLL。
最近在研究各种姿势的 HOOK,虽然 HOOK 这个东西已经是很久之前就有的技术了,但好在目前应用仍然很广泛,所以老老实实肯大佬们 10 年前啃过的骨头,下面是庄重的代码献祭时刻。
大多数恶意代码为了隐藏自己的行踪都会附加到某个进程中,在这个进程内申请一块内存区域来存放它的代码,毕竟隐藏的再好,代码也要有的,今天检测的特征是向YY语音里插入了一段自己的代码(创建了新的线程),而这个新的线程不在原有的模块内,所以思路就是遍历YY.exe这个进程中的所有线程,如果这个线程没有对应的模块,那么就说明这个线程是可疑的。
PeView 结构解析器,是一款使用C/C++开发实现的命令行交互式 WindowsPE 程序结构解析器,目前可解析32位可执行程序的绝大部分通用参数,并内置各种结构查询转换阅览工具,目前已基本可在工作中使用。
CryptLib 是新西兰奥克兰大学的Peter Gutmann先生花费了将近五年时间开发而成的一个加密安全工具包,它基于传统的计算机安全模型,并涉及到一个安全核心,各种抽象化了的对象位于核心之上。CRYPTLIB利用此加密库不同层次的接口,可以很容易地为各种应用系统提供安全服务,如加/解密、数字签名、认证等。
一段使用C++开发实现的异或加解密方法,可用于对特定字符串数据进行数据加解密操作,方便后期调用。
x64dbg 是一款开源的应用层反汇编调试器,旨在对没有源代码的可执行文件进行恶意软件分析和逆向工程,同时 x64dbg 还允许用户开发插件来扩展功能,插件开发环境的配置非常简单,如下将简单介绍x64dbg是如何配置开发环境以及如何开发插件的。
编写一个带有socket通信功能的插件,x64dbg运行后,用户点击链接按钮可直接连接到外部的python中,python作为服务端,当x64dbg内部出现某个事件后,自动将消息推送到外部python脚本上,实现反向传参的目的。
Capstone 是一个轻量级的多平台、多架构的反汇编框架。Capstone 旨在成为安全社区中二进制分析和反汇编的终极反汇编引擎。Capstone的编译非常简单只需要一步即可轻松得到对应的Lib库文件,如下将介绍该引擎如何被编译,以及简单的测试编译。
x64dbg 调试器的源码编译很麻烦,网络上的编译方法均为老版本,对于新版本来说编译过程中会出现各种错误,编译的坑可以说是一个接着一个,本人通过研究总结出了一套编译拳法可以完美编译输出,不过话说回来x64dbg这种使用两个编译器开发的方式以及调用太多的第三方项目想要完全编译其实也是非常困难的,如下笔记只提供编译x64dbg本体,并确保其能够正常运行。
ImGUI 它是与平台无关的C++轻量级跨平台图形界面库,没有任何第三方依赖,可以将ImGUI的源码直接加到项目中使用,该框架通常会配合特定的D3Dx9等图形开发工具包一起使用,ImGUI常用来实现进程内的菜单功能,而有些辅助开发作者也会使用该框架开发菜单页面,总体来说这是一个很不错的绘图库,如下将公开新版ImGUI如何实现绘制外部菜单的功能。
本关我们将学习共享代码,在C语言中角色属性都是以结构体的方式进行存储的,而结构体所存储的信息都是连续性的,这一关我们将会解释如何处理游戏中的共用代码,这种代码是通用在除了自己以外的其他同类型对像上的 常常你在修改游戏的时候, 你找到了一个单位的健康值 或是你自己角色的生命值, 你会发现一种情况: 如果你把生命值相关代码移除的话,其结果是你的角色无敌, 但你的敌人也无敌了,这就是共享代码搞的鬼。
本关是第6关的加强版,CE 6.X 教程中的4级指针比5.X的要简单些。多级指针就像玩解谜游戏一样,谜团不只一个,盒子中还有盒子。这里面是4级指针,游戏中也有比如8级指针,12级指针等等,思路都是一样的。
从本关开始,各位会初步接触到CE的反汇编功能,这也是CE最强大的功能之一。在第6关的时候我们说到指针的找法,用基址定位动态地址。但这一关不用指针也可以进行修改,即使对方是动态地址,且功能更加强大。
上一步阐述了如何使用`代码替换`功能对付变化位置的数据地址,但这种方法往往不能达到预期的效果,所以我们需要学习如何利用指针,在本关的 Tutorial.exe 窗口下面有两个按钮,一个会改变数值,另一个不但能改变数值而且还会改变数值在内存中存储的位置。
某些游戏重新开始时,数据会存储在与上次不同的地方, 甚至游戏的过程中数据的存储位置也会变动。在这种情况下,你还是可以简单几步搞定它。这次我将尽量阐述如何运用"代码替换"功能,第五关的数值每次启动教程的时候都会存放在内存不同的位置,所以地址列表中的固定地址是不起作用的。
在前面的教程中我们使用`4字节`的方式`进行扫描`,但有些游戏使用了`"浮点数"`来存储数值,浮点数是带有小数点的数值(如 5.12 或 11321.1),正如本关中的健康和弹药,两者都以浮点方法储存数据,不同的是,健康值为单精度浮点数,而弹药值为双精度浮点数。
经过第二关的练习,你已经理解了如何利用"精确数值"扫描查找数值了,让我们进行下一步,本关主要用来搜索进度条,人物血条等,因为这些数据通常是一个进度条,我们无法直接看到的数据,此时可以通过变更的数据一步步筛选找到动态地址。
附加`Tutorial-i386.exe进程`后,我们点击教程的下一步按钮,接着继续第二关,第二关的作用还是很简单的,主要目的是遍历出我们想要的动态数据,比如角色的生命,人物的魔法等,都会用到精确扫描,可以说这一关是既简单又实用的东西,也是今后制作中最常用的环节,接着我们看下`Tutorial-i386.exe程序`对这一关通关流程的描述: