阿里云虚拟化专家,专注于异构计算、深度学习加速
本文介绍了如何在GPU实例上基于NGC环境使用RAPIDS加速库,加速数据科学和机器学习任务,提高计算资源的使用效率。 ## 背景信息 {#section_koh_7rx_iga .section} RAPIDS,全称Real-time Acceleration Platform for Integrated Data Science,是NVIDIA针对数据科学和机器学习推出的GPU加
本文以使用RAPIDS加速图像搜索任务为例,介绍如何在预装镜像的GPU实例上使用RAPIDS加速库。 使用本教程进行操作前,请确保您已经注册了阿里云账号。如还未注册,请先完成[账号注册](https://account.aliyun.com/register/register.htm?)。 RAPIDS,全称Real-time Acceleration Platform for Int
目录 使用云监控实现GPU云服务器的GPU监控和报警(上) - 自定义监控 使用云监控实现GPU云服务器的GPU监控和报警(下)-云监控插件监控 1 背景 上一篇文章我们介绍了如何使用阿里云云监控服务提供的自定义监控功能,利用自定义监控提供的API或者SDK,通过自定义脚本可以将GP.
目录 云上深度学习实践(一)-GPU云服务器TensorFlow单机多卡训练性能实践 云上深度学习实践(二)-云上MXNet实践 1 MXNet 简介 1.1 MXNet特点 MXNet是一个全功能,灵活可编程和高扩展性的深度学习框架。所
目录 浅析GPU通信技术(上)-GPUDirect P2P 浅析GPU通信技术(中)-NVLink 浅析GPU通信技术(下)-GPUDirect RDMA 1. 背景 前两篇文章我们介绍的GPUDirect P2P和NVLink技术可以大大提升GPU服务器单机的GPU通信性...
1. 背景 上一篇文章《浅析GPU通信技术(上)-GPUDirect P2P》中我们提到通过GPUDirect P2P技术可以大大提升GPU服务器单机的GPU通信性能,但是受限于PCI Expresss总线协议以及拓扑结构的一些限制,无法做到更高的带宽,为了解决这个问题,NVIDIA提出了NVLink总线协议。
1. 背景 GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
本文将介绍TensorFlow在阿里云GPU云服务器上的单机性能表现,并对单机多卡的性能调优给出了一些建议。
本文将介绍如何利用阿里云云监控服务提供的自定义监控实现GPU云服务器的GPU监控和报警的可视化,从而达到对GPU使用情况实时掌握的目的。
本文使用NVCaffe、MXNet、TensorFlow三个主流开源深度学习框架对P100和P40做了图像分类场景的卷积神经网络模型训练的性能对比,并给出了详细分析,结论是P100比P40更适合深度学习训练场景。
本文介绍了GPU用于深度学习(尤其是深度学习训练)加速的背景,使用了主流的开源深度学习框架在NVIDIA GPU上实测加速性能,并给出了一些使用建议。