沉浸式学习PostgreSQL|PolarDB 20: 学习成为数据库大师级别的优化技能
在上一个实验《沉浸式学习PostgreSQL|PolarDB 19: 体验最流行的开源企业ERP软件 odoo》 中, 学习了如何部署odoo和polardb|pg. 由于ODOO是非常复杂的ERP软件, 对于关系数据库的挑战也非常大, 所以通过odoo业务可以更快速提升同学的数据库优化能力, 发现业务对数据库的使用问题(如索引、事务对锁的运用逻辑问题), 数据库的代码缺陷, 参数或环境配置问题, 系统瓶颈等.
沉浸式学习PostgreSQL|PolarDB 19: 体验最流行的开源企业ERP软件 odoo
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
直播预告 | PolarDB-PG架构简介及日常运维浅析
本次分享将先从架构、特性、开源等三个维度解读PolarDB-PG的整体架构。在大家对架构有一定深入理解后,将继续从备份恢复、存储层、计算层扩容、只读节点提升、高可用等五个维度,对PolarDB-PG的日常运维进行深入浅出的介绍,为“唯手熟尔”的运维打好理论基础。
沉浸式学习PostgreSQL|PolarDB 18: 通过GIS轨迹相似伴随|时态分析|轨迹驻点识别等技术对拐卖、诱骗场景进行侦查
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
玩转阿里云PolarDB开源数据库训练营火热开营中!
开学季玩转阿里云PolarDB开源数据库训练营开营啦!本次训练营理论结合手把手的教学,帮你轻松入门阿里云云原生开源数据库PolarDB PostgreSQL版与PolarDB分布式,一起探索PolarDB开源数据库的奥秘。
沉浸式学习PostgreSQL|PolarDB 17: 向量数据库, 通义大模型AI的外脑
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
直播预告 | MySQL & PostgreSQL 终极大比拼!
MySQL、PostgreSQL,乃至各种各样的数据库,孰强孰弱,难以辨别。究其原因,只因”不识庐山真面目,只缘身在此山中“。只需跳出”数据库“三字,一切自然看的分明。9月22日,解读如何换个维度,发现真相。
新生产力工具AI推动下一级人类文明跃迁? AI如何倒逼数据库的进化? AI加持后的数据库应用场景有哪些变化?
新生产力工具AI会催生下一级人类文明跃迁吗? 数据库进化出了哪些与AI相结合的能力? AI加持后的数据库应用场景有哪些变化?
PolarDB-X replica原理和使用
《PolarDB-X 动手实践》系列第九期,体验如何用PolarDB-X Replica将PolarDB-X作为不同上游数据库的备库。
PolarDB MySQL全球数据库(GDN)异地多活
PolarDB MySQL支持跨地域部署全球数据库,打通全国/全球企业用户的数据,数据保持同步且网络延迟不大于2秒。
如何基于PolarDB-PG处理空间数据
《PolarDB for PostgreSQL动手实践》系列,带您体验基于PolarDB for PostgreSQL部署开源空间处理插件PostGIS,并执行空间查询。
PolarDB for MySQL Serverless弹性测试
阿里云数据库PolarDB for MySQL Serverless数据库能够使得数据库集群资源随客户业务负载动态弹降,通过引入严格强一致集群(SCC)和热备无感秒切等技术,可以实现全场景下的应用无损。
高性能特性体验:ePQ 的详解与实战
PolarDB PostgreSQL 引擎提供了弹性跨机并行查询(elastic Parallel Execution)的功能,支持多个计算节点分布式地执行 SQL 查询。本实验将体验该功能。
基于Prometheus+Grafana的PolarDB-X监控体系
《PolarDB-X 动手实践》系列第十期,体验如何监控PolarDB-X集群。
Polardb-x 弹性伸缩实验
本实验主要介绍如何对PolarDB-X进行手动收缩扩容,了解PolarDB-X 中各个节点的含义,以及如何对不同配置的PolarDB-x 进行压测。
如何一键本地部署PolarDB for PostgreSQL
《PolarDB for PostgreSQL动手实践》系列第一期,带您体验如何本地一键安装快速部署云原生开源数据库PolarDB for PostgreSQL。
如何通过RDS MySQL数据库内网访问
本场景基于1台Linux云服务器实例和1台RDS MySQL实例,通过操作控制台和系统实现ECS内网访问RDS MySQL实例。

沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
沉浸式学习PostgreSQL|PolarDB 15: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
沉浸式学习PostgreSQL|PolarDB 14: 共享单车、徒步、旅游、网约车轨迹查询
本文的目的是帮助你了解如何设计轨迹表, 如何高性能的写入、查询、分析轨迹数据.
沉浸式学习PostgreSQL|PolarDB 13: 博客、网站按标签内容检索, 并按匹配度排序
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
PolarDB对比X-Engine与InnoDB空间效率
本实验带您体验创建X-Engine和InnoDB两种不同的表存储引擎,通过Sysbench模拟数据注入的过程对比俩种表引擎的空间效率。
如何在PolarDB-X中优化慢SQL
《PolarDB-X动手实践》系列第六期,本场景带您体验如何使用PolarDB-X提供的解决慢SQL的相关工具。
PolarDB-X replica 原理和使用
《PolarDB-X 动手实践》系列第九期,体验如何用 PolarDB-X Replica 将 PolarDB-X 作为不同上游数据库的备库。
直播预告 | PolarDB-PG 企业级特性 —— Shared Server特性详解
PolarDB-PG 提供了 Shared Server 内置连接池功能,实现了用户连接与后端进程的解绑。后端进程在运行时可以根据实时负载和进程污染情况进行动态转换。负载调度算法使用 Stall 机制弹性控制 Worker 数量,同时避免用户连接饿死。从根本上解决了高并发或者大量短连接带来的性能、稳定性问题。
如何在PolarDB-X中进行Online DDL
《PolarDB-X 动手实践》系列第五期,本场景带您体验如何在PolarDB-X中进行Online DDL。
PolarDB开源社区8月运营大事件回顾
2023年8月运营月报来啦!社区从运营看点、生态、活动、精彩内容推荐等几方面总结、回顾了8月发生的重要事 件。以下是社区运营报告,也欢迎更多的开发者加入,与我们一起共建PolarDB开源社区。
PolarDB-X 存储引擎核心技术 | Paxos多副本
PolarDB-X作为PolarDB分布式版,是阿里巴巴自主设计研发的高性能云原生分布式数据库产品,为用户提供高吞吐、大存储、低延时、易扩展和超高可用的云时代数据库服务。PolarDB-X在架构上可以简单分为CN节点和DN节点。计算节点CN负责SQL的解析和执行,存储节点DN负责数据的分布式事务和高可用存储。本文主要对存储引擎核心中高可用部分详细技术解读。
PolarDB-X 存储引擎核心技术 | Lizard分布式事务系统
关系型数据库作为支撑企业级数据的在线存储方案,发挥了无可替代的作用。随着海量数据的增长,以及面对创新业务爆发性增长的场景,如何能够快速,业务无损的进行在线数据库扩容,对数据库的架构提出了巨大的挑战,除此以外,企业的精细化经营,也要求数据库能够一站式提供事务处理能力和数据分析能力,为了应对这些挑战,分布式数据库应运而生。
典型场景 | PolarDB-X 如何支撑SaaS多租户
很多平台类应用或系统(如电商CRM平台、仓库订单平台等等),它们的服务模型是围绕用户维度(这里的用户维度可以是一个卖家或品牌,可以是一个仓库,等等)展开的。因此,这类型的平台业务,为了支持业务系统的水平扩展性,业务的数据库通常是按用户维度进行水平切分。

直播预告 | PolarDB-PG 企业级特性 —— 闪回特性详解
闪回表 (Flashback Table) 功能是PolarDB-PG数据库高可用的一个重要特性,支持在数据人为误操作时,快速闪回到某个时间点,恢复以及查看丢失的数据。本期分享将会介绍闪回表、闪回日志的基本原理以及特性,并演示闪回功能的使用方法。
沉浸式学习PostgreSQL|PolarDB 12: 如何快速构建 海量 逼真 测试数据
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
沉浸式学习PostgreSQL|PolarDB 11: 物联网(IoT)、监控系统、应用日志、用户行为记录等场景 - 时序数据高吞吐存取分析
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间

沉浸式学习PostgreSQL|PolarDB 10: 社交、刑侦等业务, 关系图谱搜索
业务场景1 介绍: 社交、刑侦等业务, 关系图谱搜索 - 营销、分销、流量变现、分佣、引爆流行、裂变式传播、家谱、选课、社交、人才库、刑侦、农产品溯源、药品溯源 图式搜索是PolarDB | PostgreSQL在(包括流计算、全文检索、图式搜索、K-V存储、图像搜索、指纹搜索、空间数据、时序数据、推荐等)诸多特性中的一个。 采用CTE语法,可以很方便的实现图式搜索(N度搜索、最短路径、点、边属性等)。 其中图式搜索中的:层级深度,是否循环,路径,都是可表述的。
沉浸式学习PostgreSQL|PolarDB 9: AI大模型+向量数据库, 提升AI通用机器人在专业领域的精准度, 完美诠释柏拉图提出的“知识是回忆而不是知觉”
越来越多的企业和个人希望能够利用LLM和生成式人工智能来构建专注于其特定领域的具备AI能力的产品。目前,大语言模型在处理通用问题方面表现较好,但由于训练语料和大模型的生成限制,对于垂直专业领域,则会存在知识深度和时效性不足的问题。在信息时代,由于企业的知识库更新频率越来越高,并且企业所拥有的垂直领域知识库(例如文档、图像、音视频等)往往是未公开或不可公开的。因此,对于企业而言,如果想在大语言模型的基础上构建属于特定垂直领域的AI产品,就需要不断将自身的知识库输入到大语言模型中进行训练。
沉浸式学习PostgreSQL|PolarDB 8: 电商|短视频|新闻|内容推荐业务(根据用户行为推荐相似内容)、监控预测报警系统(基于相似指标预判告警)、音视图文多媒体相似搜索、人脸|指纹识别|比对 - 向量搜索应用
1、在电商业务中, 用户浏览商品的行为会构成一组用户在某个时间段的特征, 这个特征可以用向量来表达(多维浮点数组), 同时商品、店铺也可以用向量来表达它的特征. 那么为了提升用户的浏览体验(快速找到用户想要购买的商品), 可以根据用户向量在商品和店铺向量中进行相似度匹配搜索. 按相似度来推荐商品和店铺给用户. 2、在短视频业务中, 用户浏览视频的行为, 构成了这个用户在某个时间段的兴趣特征, 这个特征可以用向量来表达(多维浮点数组), 同时短视频也可以用向量来表达它的特征. 那么为了提升用户的观感体验(推荐他想看的视频), 可以在短视频向量中进行与用户特征向量的相似度搜索.
沉浸式学习PostgreSQL|PolarDB 7: 移动社交、多媒体、内容分发、游戏业务场景, 跨地域多机房的智能加速
在移动社交、多媒体、内容分发业务场景中, 如果用户要交互的内容都在中心网络(假设深圳), 现在用户流动非常频繁, 当用户从深圳出差到北京, 因为网络延迟急剧增加, 他的访问体验就会变得非常差. 网络延迟对游戏业务的影响则更加严重. 为了解决这个问题, 企业会将业务部署在全国各地, 不管用户在哪里出差, 他都可以就近访问最近的中心. 由于标记用户的只有IP地址, 怎么根据用户的接入IP来判断他应该访问哪个中心呢? 通过这个实验, 大家可以了解到在数据库中如何存储IP地址范围和各中心IDC的映射关系, 以及如何根据用户的来源IP(接入IP)来判断他应该去哪个中心IDC访问.
沉浸式学习PostgreSQL|PolarDB 6: 预定会议室、划分管辖区
会议室预定系统最关键的几个点: 1、查询: 按位置、会议室大小、会议室设备(是否有投屏、电话会议、视频会议...)、时间段查询符合条件的会议室. 2、预定: 并写入已订纪录. 3、强约束: 防止同一个会议室的同一个时间片出现被多人预定的情况.
沉浸式学习PostgreSQL|PolarDB 5: 零售连锁、工厂等数字化率较低场景的数据分析
零售连锁, 制作业的工厂等场景中, 普遍数字化率较低, 通常存在这些问题: 数据离线, 例如每天盘点时上传, 未实现实时汇总到数据库中. 数据格式多, 例如excel, csv, txt, 甚至纸质手抄. 让我们一起来思考一下, 如何使用较少的投入实现数据汇总分析?

CloudQuery ✖️ PolarDB:让数据库管理更简单
近日,CloudQuery 数据操作管控平台与阿里云 PolarDB 数据库管理软件,完成产品集成认证测试。也在以下功能上完善了用户使用 PolarDB 的体验,使数据库的管理更加安全高效。
直播预告 | PolarDB开源数据库云上实验室:云时代下的数据库学习新范式
在学习数据库的过程中,一个便捷的练习环境是走向成功的关键第一步。为了方便开发者学习和使用开源数据库,PolarDB特别提供了免费的在线实验环境,内置PG数据库以及PolarDB-X/PolarDB-PG的容器镜像。无需下载或安装,只需一键启动,便可立即投入学习。
沉浸式学习PostgreSQL|PolarDB 4: 跨境电商场景, 快速判断商标|品牌侵权
很多业务场景中需要判断商标侵权, 避免纠纷. 例如 电商的商品文字描述、图片描述中可能有侵权内容. 特别是跨境电商, 在一些国家侵权查处非常严厉. 注册公司名、产品名时可能侵权. 在写文章时, 文章的文字内容、视频内容、图片内容中的描述可能侵权. 例如postgresql是个商标, 如果你使用posthellogresql、postgresqlabc也可能算侵权. 以跨境电商为力, 为了避免侵权, 在发布内容时需要商品描述中出现的品牌名、产品名等是否与已有的商标库有相似. 对于跨境电商场景, 由于店铺和用户众多, 商品的修改、发布是比较高频的操作, 所以需要实现高性能的字符串相似匹配功能.
沉浸式学习PostgreSQL|PolarDB 3: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销
业务场景1 介绍: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销 在营销场景中, 通常会对用户的属性、行为等数据进行统计分析, 生成用户的标签, 也就是常说的用户画像. 标签举例: 男性、女性、年轻人、大学生、90后、司机、白领、健身达人、博士、技术达人、科技产品爱好者、2胎妈妈、老师、浙江省、15天内逛过手机电商店铺、... ... 有了用户画像, 在营销场景中一个重要的营销手段是根据条件选中目标人群, 进行精准营销. 例如圈选出包含这些标签的人群: 白领、科技产品爱好者、浙江省、技术达人、15天内逛过手机电商店铺 .

PolarDB开源
PolarDB 是阿里云自研的云原生数据库产品家族,采用存储计算分离、软硬一体化设计,既拥有分布式设计的低成本优势,又具有集中式的易用性,可满足大规模应用场景需求。 2021年,阿里云先后宣布PolarDB PostgreSQL版与PolarDB分布式版开源,并持续推动开源版本迭代和演进,助力开发者通过开源版本快速使用阿里云数据库产品技术,并参与产品迭代中来。 开源历程参见:OpenPolarDB.com/about