如何将 PolarDB-X 与大数据等系统互通

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 本场景带您体验如何将PolarDB-X通过Canal与ClickHouse进行互通。

如何将 PolarDB-X 与大数据等系统互通


1. 创建实验资源

开始实验之前,您需要先创建ECS实例资源。

  1. 在实验室页面,单击创建资源
  2. (可选)在实验室页面左侧导航栏中,单击云产品资源列表,可查看本次实验资源相关信息(例如IP地址、用户信息等)。

说明 :资源创建过程需要1~3分钟。


2. 安装PolarDB-X

本步骤将指导您如何安装PolarDB-X。

  1. 安装并启动Docekr。

(1) 执行如下命令,安装Docker。

curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun

(2) 执行如下命令,启动Docker。

systemctl start docker
  1. 执行如下命令,安装PolarDB-X。
docker run -d --name some-polardb-x -p 8527:8527 polardbx/polardb-x:2.1.0


3. 登录PolarDB-X数据库

本步骤将指导您如何登录PolarDB-X数据库。

PolarDB-X支持通过MySQL Client命令行、第三方客户端以及符合MySQL交互协议的第三方程序代码进行连接。本实验场景主要介绍如何通过MySQL Client命令行连接到PolarDB-X数据库。

  1. 执行如下命令,安装MySQL。
yum install mysql -y
  1. 执行如下命令,查看MySQL版本号。
mysql -V

返回结果如下,表示您已成功安装MySQL。

  1. 执行如下命令,登录PolarDB-X数据库。

说明:

  • 本实验场景中的PolarDB-X数据库用户名和密码已预设,请您使用下方命令登录即可。
  • 如遇到mysql: [Warning] Using a password on the command line interface can be insecure.ERROR 2013 (HY000): Lost connection to MySQL server at 'reading initial communication packet', system error: 0报错,请您稍等一分钟,重新执行登录命令即可。
mysql -h127.0.0.1 -P8527 -upolardbx_root -p123456

返回结果如下,表示您已成功登录PolarDB-X数据库。

  1. 输入exit退出数据库。


4. 搭建实时分析系统

本步骤将指导您如何使用PolarDB-X+Canal+ClickHouse搭建实时分析系统。

  1. 部署Canal。

Canal是一款流行的MySQL Binlog增量订阅工具,详情请参见Canal说明文档。Canal提供了Docker镜像,详情请参见Canal Docker镜像文档

(1) 执行如下命令,下载脚本。

wget https://raw.githubusercontent.com/alibaba/canal/master/docker/run.sh

(2) 执行如下命令,构建一个destination name为test的队列。

注意 :您需要将none_loopback_host_ip修改为云产品资源列表中的ECS的弹性IP,请勿使用localhost或127.0.0.1。

sh run.sh -e canal.auto.scan=false \
-e canal.destinations=test \
-e canal.instance.master.address=none_loopback_host_ip:8527 \
-e canal.instance.dbUsername=polardbx_root \
-e canal.instance.dbPassword=123456 \
-e canal.instance.connectionCharset=UTF-8 \
-e canal.instance.tsdb.enable=true \
-e canal.instance.gtidon=false
  1. 部署ClickHouse。

ClickHouse是一款分析系统,详情请参见ClickHouse官方文档。ClickHouse提供了Docker镜像,详情请参见ClickHouseDocker镜像文档

执行如下命令,部署ClickHouse。

docker run -d --name some-clickhouse-server --ulimit nofile=262144:262144 -p 8123:8123 yandex/clickhouse-server

在PolarDB-X和ClickHouse中创建测试库和表。

(1) 执行如下命令,登录PolarDB-X数据库。

mysql -h127.0.0.1 -P8527 -upolardbx_root -p123456

(2) 执行如下SQL语句,创建数据库testdb。

CREATE DATABASE testdb;

(3) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(4) 执行如下SQL语句,创建test表。

CREATE TABLE test(
id INT(11) AUTO_INCREMENT PRIMARY KEY,
name CHAR(20) not null );

(5) 输入exit退出数据库。

(6) 执行如下命令,登录ClickHouse数据库。

docker run -it --rm --link some-clickhouse-server:clickhouse-server yandex/clickhouse-client --host clickhouse-server

(7) 执行如下SQL语句,创建数据库testdb。

CREATE DATABASE testdb;

(8) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(9) 执行如下SQL语句,创建test表。

Create Table test(id INT(32),name CHAR(20)) Engine = MergeTree() Order By id;

(10) 输入exit退出数据库。

运行Canal Client消费并投递增量变更。

经过以上步骤,您已经准备好了PolarDB-X、Canal Server和ClickHouse三个容器,并且在源端(PolarDB-X)和目标(ClickHouse)建好了测试用的数据库和表。接下来我们通过Canal Client消费Canal Server获取的增量数据,并将源端DML中的Insert事件投递到ClickHouse中。

(1) 执行如下命令,使用yum安装JDK 1.8。

yum -y install java-1.8.0-openjdk*

(2) 执行如下命令,下载polardb-x-to-clickhouse-canal-client.jar投递代码文件。

wget https://labfileapp.oss-cn-hangzhou.aliyuncs.com/polardb-x-to-clickhouse-canal-client.jar

(3) 执行如下命令,运行polardb-x-to-clickhouse-canal-client.jar代码文件。

java -jar polardb-x-to-clickhouse-canal-client.jar

注意:请勿中断投递代码文件,否则会造成投递失败。

(4) 投递链路已成功打通,接下来您可以在源端(PolarDB-X)执行INSERT语句,并观察目标端(ClickHouse)中的数据变化。

在实验页面,单击右上角的 图标,创建新的终端窗口。

(5) 在新的终端窗口中,执行如下命令,登录PolarDB-X数据库。

mysql -h127.0.0.1 -P8527 -upolardbx_root -p123456

(6) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(7) 执行如下SQL语句,插入一条数据。

INSERT INTO test(name) values("polardb-x"), ("is"), ("awsome");

(8) 输入exit退出数据库。

(9) 执行如下命令,登录ClickHouse数据库。

docker run -it --rm --link some-clickhouse-server:clickhouse-server yandex/clickhouse-client --host clickhouse-server

(10) 执行如下SQL语句,使用数据库testdb。

USE testdb;

(11) 执行如下SQL语句,查询test表

SELECT * FROM test;

返回结果如下,您可以看到目标端(ClickHouse)接收到投递过来的数据。


5. 了解更多


实验链接:https://developer.aliyun.com/adc/scenario/a734d982339845f18baa71d3cd5a4387

相关文章
|
11天前
|
传感器 人工智能 大数据
高科技生命体征探测器、情绪感受器以及传感器背后的大数据平台在健康监测、生命体征检测领域的设想与系统构建
本系统由健康传感器、大数据云平台和脑机接口设备组成。传感器内置生命体征感应器、全球无线定位、人脸识别摄像头等,搜集超出现有科学认知的生命体征信息。云平台整合大数据、云计算与AI,处理并传输数据至接收者大脑芯片,实现实时健康监测。脑机接口设备通过先进通讯技术,实现对健康信息的实时感知与反馈,确保身份验证与数据安全。
|
5月前
|
数据采集 存储 数据处理
数据平台问题之知识管理系统的效果如何评估
数据平台问题之知识管理系统的效果如何评估
101 2
|
5月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
185 0
|
2月前
|
关系型数据库 Serverless 分布式数据库
PolarDB Serverless 模式通过自动扩缩容技术,根据实际工作负载动态调整资源,提高系统灵活性与成本效益
PolarDB Serverless 模式通过自动扩缩容技术,根据实际工作负载动态调整资源,提高系统灵活性与成本效益。用户无需预配高固定资源,仅需为实际使用付费,有效应对流量突变,降低总体成本。示例代码展示了基本数据库操作,强调了合理规划、监控评估及结合其他云服务的重要性,助力企业数字化转型。
50 6
|
2月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
53 4
|
3月前
|
SQL JSON 关系型数据库
MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
【10月更文挑战第3天】MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
260 5
|
3月前
|
关系型数据库 Unix MySQL
MySQL是一种关系型数据库管理系统
MySQL是一种关系型数据库管理系统
80 2
|
4月前
|
并行计算 关系型数据库 分布式数据库
朗坤智慧科技「LiEMS企业管理信息系统」通过PolarDB产品生态集成认证!
近日,朗坤智慧科技股份有限公司「LiEMS企业管理信息系统软件」通过PolarDB产品生态集成认证!
|
5月前
|
存储 SQL 分布式计算
Hadoop生态系统概述:构建大数据处理与分析的基石
【8月更文挑战第25天】Hadoop生态系统为大数据处理和分析提供了强大的基础设施和工具集。通过不断扩展和优化其组件和功能,Hadoop将继续在大数据时代发挥重要作用。
|
5月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决

相关产品

  • 云原生分布式数据库 PolarDB-X
  • 云原生数据库 PolarDB