开发者社区> 视觉智能> 图像理解

图像理解

关注

图像识别技术可实现精准识别图像中的视觉内容,包括上千种物体标签、数十种常见场景等,为用户提供图像打标、场景分类、颜色识别、风格识别以及元素识别等能力。图像识别技术可广泛应用于数字营销、新零售、广告设计等行业场景。

0
今日
131
内容
0
活动
23
关注
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
|

YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点

该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。

110 0
|
3月前
|
机器学习/深度学习 API 计算机视觉
|

如何使用深度学习实现图像分类

深度学习在图像分类中扮演着核心角色,通过卷积神经网络(CNN)自动提取图像特征并分类。本文介绍深度学习原理及其实现流程,包括数据准备、构建CNN模型、训练与评估模型,并讨论如何在阿里云上部署模型及其实用场景。

164 2
|
6月前
|
算法 数据可视化 数据处理
|

YOLOv5实现图片内目标检测

本文介绍了如何配置yolov5的运行环境、如何进行数据标注、如何通过yolov5训练数据集实现图片的目标检测。目标检测在计算机视觉领域中具有重要意义,yolov5(You Only Look One-level)是目标检测算法中的一种代表性方法,以其高效性和准确性备受关注,并且在各种目标检测任务中都表现出卓越的性能。

601 1
我要发布