在EPL中,如何通过strategy annotation实现流水并行,并设定pipeline的micro batch数量?
在EPL中,用户可以通过pipeline.num_micro_batch参数来设定pipeline的micro batch数量,并通过strategy annotation将模型划分为多个TaskGraph来实现流水并行。例如,模型被切分为"stage0"和"stage1",这两个TaskGraph组成一个模型副本,共需2张GPU卡。如果用户申请了8张卡,EPL会自动在pipeline外嵌套一层并行度为4的数据并行。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。