在技术上,VAR采用了与GPT-2相似的变压器(Transformer)架构进行视觉自回归学习。这种架构使VAR能够充分利用Transformer模型的长距离依赖能力和有效的序列建模能力,实现多尺度视觉自回归学习。从最低分辨率的标记图开始,模型逐步自回归地提高分辨率,每一步的预测都基于之前所有尺度的标记图。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。