损失函数是用于度量模型预测值与实际值之间的差异,或者说模型的预测误差。它是模型优化的目标函数,模型通过最小化损失函数来使预测结果更接近实际值。
常见的损失函数包括均方误差(Mean Squared Error, MSE)、交叉熵(Cross Entropy)和对数损失(Log Loss)等。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。