MaxCompute使用pyodps读取maxcompute数据表 有没有一些加速读取效率的示例 ?
在MaxCompute中,使用pyodps读取数据表时,可以通过以下方法来加速读取效率:
from odps import ODPS
access_id = 'your_access_id'
access_key = 'your_access_key'
project = 'your_project'
endpoint = 'your_endpoint'
odps = ODPS(access_id, access_key, project, endpoint)
table = odps.get_table('your_table')
partitions = ['partition_col=value1', 'partition_col=value2']
instance = table.get_partitions(partitions)
from odps import ODPS
access_id = 'your_access_id'
access_key = 'your_access_key'
project = 'your_project'
endpoint = 'your_endpoint'
odps = ODPS(access_id, access_key, project, endpoint)
table = odps.get_table('your_table')
columns = ['col1', 'col2']
instance = table.get_columns(columns)
from odps import ODPS
access_id = 'your_access_id'
access_key = 'your_access_key'
project = 'your_project'
endpoint = 'your_endpoint'
odps = ODPS(access_id, access_key, project, endpoint)
table = odps.get_table('your_table')
limit = 1000
offset = 0
while True:
records = table.get_data(limit=limit, offset=offset)
if not records:
break
# 处理数据
offset += limit
from concurrent.futures import ThreadPoolExecutor
from odps import ODPS
def read_data(start, end):
access_id = 'your_access_id'
access_key = 'your_access_key'
project = 'your_project'
endpoint = 'your_endpoint'
odps = ODPS(access_id, access_key, project, endpoint)
table = odps.get_table('your_table')
limit = 1000
offset = start
while offset < end:
records = table.get_data(limit=limit, offset=offset)
# 处理数据
offset += limit
with ThreadPoolExecutor(max_workers=4) as executor:
tasks = [executor.submit(read_data, i * 10000, (i + 1) * 10000) for i in range(4)]
for task in tasks:
task.result()
看下mcqa部分https://pyodps.readthedocs.io/zh-cn/latest/base-sql.html ,此回答整理自钉群“MaxCompute开发者社区2群”
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。