ModelScope damo/nlp_raner_named-entity-recognition_chinese-base-ecom-50cls 能用python代码训练吗?
可以,你可以使用PaddleNLP库来训练这个模型。首先确保你已经安装了PaddleNLP库,然后按照以下步骤进行操作:
import paddle
from paddlenlp.transformers import ErnieTokenizer, ErnieModel
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.metrics import ChunkEvaluator
train_data = load_dataset("ecom", splits=["train"])
dev_data = load_dataset("ecom", splits=["dev"])
tokenizer = ErnieTokenizer.from_pretrained("ernie-base-chinese")
def preprocess(example):
text = example["text"]
labels = example["label"]
encoding = tokenizer(text, return_token_type_ids=False, return_attention_mask=True)
return {"input_ids": encoding["input_ids"], "attention_mask": encoding["attention_mask"], "labels": labels}
train_data = train_data.map(preprocess)
dev_data = dev_data.map(preprocess)
model = ErnieModel.from_pretrained("ernie-base-chinese")
optimizer = paddle.optimizer.AdamW(learning_rate=5e-5, parameters=model.parameters())
loss_fn = paddle.nn.CrossEntropyLoss()
evaluator = ChunkEvaluator()
for epoch in range(3):
for batch in train_data:
input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
model.train()
logits = model(input_ids, attention_mask=attention_mask)
loss = loss_fn(logits, labels)
loss.backward()
optimizer.step()
optimizer.clear_grad()
print("Epoch:", epoch, "Loss:", loss.numpy())
model.eval()
with paddle.no_grad():
for batch in dev_data:
input_ids, attention_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
logits = model(input_ids, attention_mask=attention_mask)
predictions = paddle.argmax(logits, axis=-1).numpy()
evaluator.evaluate(predictions, labels)
print("Evaluation result:", evaluator.accumulate())
这样你就可以使用Python代码训练这个模型了。注意,这里的代码仅作为示例,你可能需要根据实际情况进行调整。
Damo/NLP-RANER-Named-Entity-Recognition-Chinese-Base-Ecom-50Cls是ModelScope上的一款命名实体识别模型,用于识别中文文本中的实体。以下是一些使用Python代码训练这个模型的步骤:
使用Python代码训练ModelScope上的模型时,需要确保你的Python环境和相关库的正确性,否则可能会导致模型无法正常训练。