开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

机器学习PAI中deeprec有直接读odps TableRecordDataset的工具吗?

机器学习PAI中deeprec有直接读odps TableRecordDataset的工具吗?

展开
收起
真的很搞笑 2023-10-18 17:15:09 87 0
2 条回答
写回答
取消 提交回答
  • DeepRec是阿里巴巴开源的一套深度学习推荐系统框架,它提供了多种数据读取接口,包括读取本地文件、HDFS、ODPS等。但是,DeepRec并没有提供直接读取ODPS TableRecordDataset的接口。

    如果你想在DeepRec中使用ODPS TableRecordDataset,你需要先将数据从ODPS TableRecordDataset转换为其他格式,然后再使用DeepRec的数据读取接口读取这个转换后的数据。

    具体来说,你可以使用ODPS的SDK来读取ODPS TableRecordDataset,然后将数据转换为JSON或者CSV格式,然后再使用DeepRec的数据读取接口读取这个转换后的数据。

    以下是一个基本的示例:

    ```python
    import pai.deeping.model.io.reader.Reader;
    import org.apache.commons.csv.CSVFormat;
    import org.apache.commons.csv.CSVParser;
    import org.apache.commons.csv.CSVRecord;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.fs.FSDataInputStream;
    import org.apache.hadoop.fs.FileStatus;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org

    2023-10-21 17:53:23
    赞同 展开评论 打赏
  • 公众号:网络技术联盟站,InfoQ签约作者,阿里云社区签约作者,华为云 云享专家,BOSS直聘 创作王者,腾讯课堂创作领航员,博客+论坛:https://www.wljslmz.cn,工程师导航:https://www.wljslmz.com

    在阿里云机器学习平台PAI中,DeepRec算法库提供了非常丰富的推荐算法模型和工具。当您需要读取ODPS表数据时,可以利用PAI Data Source组件提供的TableRecordDataset来实现数据的读取和处理。

    具体而言,您可以按照以下步骤使用TableRecordDataset来读取ODPS表数据:

    1. 在PAI Studio中创建一个新的项目,并创建一个Python的Notebook环境。
    2. 在Notebook中导入必要的Python库(如tensorflow, pai等),并使用pai.data.TableRecordDataset创建数据集对象:
      ```
      import tensorflow as tf
      from pai.data.odps.odps_reader import OdpsTableReader

    odps_tablereader = OdpsTableReader(
    access_id="your_odps_access_id",
    access_key="your_odps_access_key",
    project="your_odps_project_name",
    endpoint="your_odps_endpoint",
    table="your_odps_table_name"
    )

    data = tf.data.Dataset.from_generator(
    odps_tablereader.read, output_types=(tf.int64, tf.float32),
    output_shapes=([None, 1], [None, None]))
    ```

    1. 对于TableRecordDataset对象data,您可以使用tf.data API中的各种函数进行数据的处理和转换,最后将其传递给DeepRec算法库的模型训练函数或预测函数来完成模型的训练或预测操作。
    2023-10-18 18:27:57
    赞同 展开评论 打赏

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

相关产品

  • 人工智能平台 PAI
  • 相关电子书

    更多
    Data+AI时代大数据平台应该如何建设 立即下载
    大数据AI一体化的解读 立即下载
    极氪大数据 Serverless 应用实践 立即下载