DataWorks数据同步任务的update原理是通过Spark SQL的Merge Join完成的。
Spark SQL中的Merge Join是基于内存的一种连接操作,它可以将两个表中的记录进行连接,并将结果写入一个新的表中。Merge Join的工作原理如下:
Spark SQL会将两个表中的记录分别读取到内存中。
Spark SQL会根据连接条件,将两个表中的记录进行合并。
Spark SQL会将合并后的结果写入一个新的表中。
Merge Join可以有效地减少数据同步任务的执行时间,但是它对内存的使用量比较大。如果两个表很大,Spark SQL可能无法将它们全部读取到内存中。这种情况下,Spark SQL会使用分布式Merge Join,将两个表分成多个块,分别在不同的节点上进行连接,然后将结果合并起来。
DataWorks数据同步任务的update原理就是通过Spark SQL的Merge Join完成的。在执行数据同步任务时,DataWorks会根据连接条件,将需要同步的表分成多个块,分别在不同的节点上进行连接,然后将结果合并起来。最后,DataWorks会将合并后的结果写入目标表中。
Spark SQL的Merge Join是一种非常有效的数据连接操作,它可以有效地减少数据同步任务的执行时间。但是,它对内存的使用量比较大。如果两个表很大,Spark SQL可能无法将它们全部读取到内存中。这种情况下,Spark SQL会使用分布式Merge Join,将两个表分成多个块,分别在不同的节点上进行连接,然后将结果合并起来。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
DataWorks基于MaxCompute/Hologres/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。