针对线上多目标问题,我们该怎么设计整套的方案,怎么去编排整套的推荐召回应用逻辑?
一种是说多模型解决多目标问题。假设就是点击和时长这两个目标,你可以有一套推荐召回模块专门针对点击。另一块专门针对使用时长去做训练。这两个结果你把它融合一下,得到最终的推荐结果。但代价就会比较大,你要同时维护两个系统,而且二者的比例也不好去量化。
方案二是合并多目标成单模型,是目前采用得比较多的一个方案,也是效果相对来讲会比较好的一个方案。你把目标一和目标二这两个目标先融合成一个目标。比如说你把是否点击和观看时长按照一个比例去压缩下,把它都放到 0~1 之间。不点击就 0,点击就是 1。然后你把观看时长去做一个归一化,把整个时间都缩小到 0~1 的区间去。这样,你整个的区间就变成了 0~2,变成一个单目标的数值。这样的话你就可以针对这一个目标去训练你的召回、排序模型,从而拿到最终的结果。这样做的好处是你只需要维护一套推荐业务的建模流程,会比较方便维护,最后的效果也通常是方案二好一些。
以上内容摘自《个性化推荐系统开发指南》电子书,点击https://developer.aliyun.com/topic/download?id=204可下载完成版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。