在古典回归模型的假定下,普通最小二乘估计量是线性、无偏、有效估计量,即在所有无偏估量中,最小二乘估计量具有最小方差性——它是有效估计量。如果在其他假定不变的条件下,允许随机扰动项ui存在异方差性,即ui的方差随观测值的变化而变化,这就违背了最小二乘法估计的高斯——马尔柯夫假设,这时如果继续使用最小二乘法对参数进行估计,就会产生以下后果:
1.参数估计量仍然是线性无偏的,但不是有效的;
2.异方差模型中的方差不再具有最小方差性;
3.t检验失去作用;
4.模型的预测作用遭到破坏。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。