开发者社区> 问答> 正文

智能视频监控的目标检测是怎么样的?

智能视频监控的目标检测是怎么样的?

展开
收起
游客hcbl7nscg7phu 2022-03-14 22:29:48 1400 0
1 条回答
写回答
取消 提交回答
  • 视觉监控的主要目的,是从一组包含人的图像序列中检测、识别、跟踪人体,并对其行为进行理解和描述。大体上这个过程可分为底层视觉模块(low-levelvision)、数据融合模块(intermediate-level vision)和高层视觉模块(high-levelvision)。 其中,底层视觉模块主要包括运动检测、目标跟踪等运动分析方法;数据融合模块主要解决多摄像机数据进行融合处理问题;高层视觉模块主要包括目标的识别,以及有关于运动信息的语义理解与描述等。 如何使系统自适应于环境,是场景建模以及更新的核心问题。有了场景模型,就可以进行运动检测,然后对检测到的运动区域进行目标分类与跟踪。接下来是多摄像机数据融合问题。最后一步是事件检测和事件理解与描述。通过对前面处理得到的人体运动信息进行分析及理解,最终给出我们需要的语义数据。下面对其基本处理过程做进一步的说明。 序列图像包含大量信息,要保证目标跟踪的实时性要求,必须选择计算量小的算法。鲁棒性是目标跟踪的另一个重要性能,提高算法的鲁棒性就是要使算法对复杂背景、光照变化和遮挡等情况有较强的适应性,而这又要以复杂的运算为代价。

    2022-03-14 22:30:57
    赞同 展开评论 打赏
问答分类:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
DeepStream: 大规模智能视频分析系统 立即下载
云端大规模视频分析:MaxCompute在视觉计算中的应用 立即下载
安防视频监控数据存储解决方案蓝皮书 立即下载