减少map数目:
set mapred.max.split.size
set mapred.min.split.size
set mapred.min.split.size.per.node
set mapred.min.split.size.per.rack
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
增加map数目:
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
select data_desc, count(1), count(distinct id),sum(case when …),sum(case when …),sum(…) from a group by data_desc 如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as select * from a distribute by rand(123); 这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
reduce数目设置:
参数1:hive.exec.reducers.bytes.per.reducer=1G:每个reduce任务处理的数据量
参数2:hive.exec.reducers.max=999(0.95TaskTracker数):每个任务最大的reduce数目
reducer数=min(参数2,总输入数据量/参数1)
set mapred.reduce.tasks:每个任务默认的reduce数目。典型为0.99reduce槽数,hive将其设置为-1,自动确定reduce数目。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。