Flink 的 Watermark 机制究竟是什么呢?
在使用 EventTime 处理 Stream 数据的时候会遇到数据乱序的问题,流处理从 Event(事 件)产生,流经 Source,再到 Operator,这中间需要一定的时间。虽然大部分情况下,传输到 Operator 的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络延迟等原因而导致乱序的产生,特别是使用 Kafka 的时候,多个分区之间的数据无法保证有序。因此, 在进行 Window 计算的时候,不能无限期地等下去,必须要有个机制来保证在特定的时间后, 必须触发 Window 进行计算,这个特别的机制就是 Watermark(水位线)。Watermark是用于处理乱序事件的。
在 Flink 的窗口处理过程中,如果确定全部数据到达,就可以对 Window 的所有数据做窗口计算操作(如汇总、分组等),如果数据没有全部到达,则继续等待该窗口中的数据全部到达才开始处理。这种情况下就需要用到水位线(WaterMarks)机制,它能够衡量数据处理进度(表达数据到达的完整性),保证事件数据(全部)到达 Flink 系统,或者在乱序及延迟到达时,也能够像预期一样计算出正确并且连续的结果。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。