开发者社区> 问答> 正文

MapReduce中的Map端的Shuffle是什么?

MapReduce中的Map端的Shuffle是什么?

展开
收起
游客daliwbfb2wo66 2021-12-04 21:35:56 439 0
1 条回答
写回答
取消 提交回答
  • Map函数开始产生输出时,并不是简单地把数据写到磁盘,因为频繁的磁盘操作会导致性能严重下降。它的处理过程更复杂,数据首先写到内存中的一个缓冲区,并做一些预排序,以提升效率; 每个MapTask都有一个用来写入输出数据的循环内存缓冲区(默认大小为100MB),当缓冲区中的数据量达到一个特定阈值时(默认是80%)系统将会启动一个后台线程把缓冲区中的内容写到磁盘(即spill阶段)。在写磁盘过程中,Map输出继续被写到缓冲区,但如果在此期间缓冲区被填满,那么Map就会阻塞直到写磁盘过程完成; 在写磁盘前,线程首先根据数据最终要传递到的Reducer把数据划分成相应的分区(partition)。在每个分区中,后台线程按Key进行排序(快速排序),如果有一个Combiner(即Mini Reducer)便会在排序后的输出上运行; 一旦内存缓冲区达到溢出写的阈值,就会创建一个溢出写文件,因此在MapTask完成其最后一个输出记录后,便会有多个溢出写文件。在在MapTask完成前,溢出写文件被合并成一个索引文件和数据文件(多路归并排序)(Sort阶段); 溢出写文件归并完毕后,Map将删除所有的临时溢出写文件,并告知TaskTracker任务已完成,只要其中一个MapTask完成,ReduceTask就开始复制它的输出(Copy阶段); Map的输出文件放置在运行MapTask的TaskTracker的本地磁盘上,它是运行ReduceTask的TaskTracker所需要的输入数据,但是Reduce输出不是这样的,它一般写到HDFS中(Reduce阶段)。

    2021-12-04 21:36:11
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
基于E-MapReduce梨视频推荐系统 立即下载
大数据解决方案构建详解 以阿里云E-MapReduce为例 立即下载
阿里云E-MapReduce 立即下载