与其他数据库相比,HBase在系统设计以及实际实践中有很多独特的优点。
容量巨大:HBase的单表可以支持千亿行、百万列的数据规模,数据容量可以达到TB甚至PB级别。传统的关系型数据库,如Oracle和MySQL等,如果单表记录条数超过亿行,读写性能都会急剧下降,在HBase中并不会出现这样的问题。
良好的可扩展性:HBase集群可以非常方便地实现集群容量扩展,主要包括数据存储节点扩展以及读写服务节点扩展。HBase底层数据存储依赖于HDFS系统,HDFS可以通过简单地增加DataNode实现扩展,HBase读写服务节点也一样,可以通过简单的增加RegionServer节点实现计算层的扩展。
稀疏性:HBase支持大量稀疏存储,即允许大量列值为空,并不占用任何存储空间。这与传统数据库不同,传统数据库对于空值的处理要占用一定的存储空间,这会造成一定程度的存储空间浪费。因此可以使用HBase存储多至上百万列的数据,即使表中存在大量的空值,也不需要任何额外空间。
高性能:HBase目前主要擅长于OLTP场景,数据写操作性能强劲,对于随机单点读以及小范围的扫描读,其性能也能够得到保证。对于大范围的扫描读可以使用MapReduce提供的API,以便实现更高效的并行扫描。
多版本:HBase支持多版本特性,即一个KV可以同时保留多个版本,用户可以根据需要选择最新版本或者某个历史版本。
支持过期:HBase支持TTL过期特性,用户只需要设置过期时间,超过TTL的数据就会被自动清理,不需要用户写程序手动删除。
Hadoop原生支持:HBase是Hadoop生态中的核心成员之一,很多生态组件都可以与其直接对接。HBase数据存储依赖于HDFS,这样的架构可以带来很多好处,比如用户可以直接绕过HBase系统操作HDFS文件,高效地完成数据扫描或者数据导入工作;再比如可以利用HDFS提供的多级存储特性(Archival Storage Feature),根据业务的重要程度将HBase进行分级存储,重要的业务放到SSD,不重要的业务放到HDD。或者用户可以设置归档时间,进而将最近的数据放在SSD,将归档数据文件放在HDD。另外,HBase对MapReduce的支持也已经有了很多案例,后续还会针对Spark做更多的工作。
资料来源:《HBase原理与实践》,文章链接:https://developer.aliyun.com/article/724670
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。