开发者社区> 问答> 正文

参数VS超参数

参数VS超参数

展开
收起
因为相信,所以看见。 2020-05-20 15:49:47 723 0
1 条回答
写回答
取消 提交回答
  • 阿里,我所有的向往

    image.png image.png 另一个近来深度学习的影响是它用于解决很多问题,从计算机视觉到语音识别,到自然语言处理,到很多结构化的数据应用,比如网络广告或是网页搜索或产品推荐等等。我所看到过的就有很多其中一个领域的研究员,这些领域中的一个,尝试了不同的设置,有时候这种设置超参数的直觉可以推广,但有时又不会。所以我经常建议人们,特别是刚开始应用于新问题的人们,去试一定范围的值看看结果如何。然后下一门课程,我们会用更系统的方法,用系统性的尝试各种超参数取值。然后其次,甚至是你已经用了很久的模型,可能你在做网络广告应用,在你开发途中,很有可能学习率的最优数值或是其他超参数的最优值是会变的,所以即使你每天都在用当前最优的参数调试你的系统,你还是会发现,最优值过一年就会变化,因为电脑的基础设施,CPU或是GPU可能会变化很大。所以有一条经验规律可能每几个月就会变。如果你所解决的问题需要很多年时间,只要经常试试不同的超参数,勤于检验结果,看看有没有更好的超参数数值,相信你慢慢会得到设定超参数的直觉,知道你的问题最好用什么数值。

    这可能的确是深度学习比较让人不满的一部分,也就是你必须尝试很多次不同可能性。但参数设定这个领域,深度学习研究还在进步中,所以可能过段时间就会有更好的方法决定超参数的值,也很有可能由于CPU、GPU、网络和数据都在变化,这样的指南可能只会在一段时间内起作用,只要你不断尝试,并且尝试保留交叉检验或类似的检验方法,然后挑一个对你的问题效果比较好的数值。

    近来受深度学习影响,很多领域发生了变化,从计算机视觉到语音识别到自然语言处理到很多结构化的数据应用,比如网络广告、网页搜索、产品推荐等等;有些同一领域设置超参数的直觉可以推广,但有时又不可以,特别是那些刚开始研究新问题的人们应该去尝试一定范围内的结果如何,甚至那些用了很久的模型得学习率或是其他超参数的最优值也有可能会改变。

    在下个课程我们会用系统性的方法去尝试各种超参数的取值。有一条经验规律:经常试试不同的超参数,勤于检查结果,看看有没有更好的超参数取值,你将会得到设定超参数的直觉。

    2020-05-20 15:50:36
    赞同 展开评论 打赏
问答分类:
C++
问答地址:
问答排行榜
最热
最新

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载

相关实验场景

更多