我有以下数据集;
     Subject                                         Student ID  Student Number
0      Cit11  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              45
1  EngLang11  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              45
2   EngLit11  [S110, S111, S112, S113, S114, S115, S116, S11...              21
3      Fre11  [S95, S96, S97, S99, S100, S101, S102, S103, S...              26
4      Ger11  [S114, S115, S116, S117, S118, S124, S125, S12...              13
5      His11  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              45
6      Mat11  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              45
7      Spa11  [S95, S97, S98, S99, S100, S102, S103, S104, S...              23
 
其中,“学生编号”是每个“主题”中“学生ID”的总数。
假设最大的“学生人数”应该为30(classroom_Max_Capacity返回值),下面的代码返回“学生人数”超过最大数量的索引。
idx = filtered_Group[filtered_Group['Student Number'] > classroom_Max_Capacity].index.tolist()
Output: [0, 1, 5, 6]
 
我想知道是否可以通过更改Subject'名称和Student ID'将这些行分成两部分以适应最大学生人数;例如,
Subject                                         Student ID  Student Number
0      Cit11_1  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              30
1      Cit11_2  [S110, S115, S116...                                           15
2  EngLang11_1  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              30
3  EngLang11_2  [S110, S115, S116...                                           15
4     EngLit11  [S110, S111, S112, S113, S114, S115, S116, S11...              21
5        Fre11  [S95, S96, S97, S99, S100, S101, S102, S103, S...              26
6        Ger11  [S114, S115, S116, S117, S118, S124, S125, S12...              13
7      His11_1  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              30
8      His11_2  [S110, S115, S116...                                           15
9      Mat11_1  [S95, S96, S97, S98, S99, S100, S101, S102, S1...              30
10     Matt11_2 [S110, S115, S116...                                           15
11       Spa11  [S95, S97, S98, S99, S100, S102, S103, S104, S...              23
 
通过不专门写修改的'Subject'名称来添加到数据框中,这是否有可能?
我试图通过做类似的事情来解决这个问题。
filtered = filtered_Group.iloc[idx]
student_list = filtered['Student ID'].explode().str.split(', ')
subject_list = filtered['Subject']
for i in idx:
    for number in range(classroom_Max_Capacity):
        df.append({temp_subject_list[i]: temp_student_list[number]})
 
但是,当然,这是行不通的,因此不胜感激。
问题来源:stackoverflow
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
您可以使用explode枚举学生,然后使用groupby:
# randome data
np.random.seed(1)
df = pd.DataFrame({
    'Subject': list('abcdef'),
    'Student Number': [np.random.choice(np.arange(20), 
                                        np.random.randint(3,10),
                                        replace=None)
                       for _ in range(6)]
})
# maximum number of students allowed
max_students = 5
# output:
(df.explode('Student Number')
   .assign(section=lambda x: x.groupby('Subject')
                              .cumcount()//max_students + 1
          )
   .groupby(['Subject','section'])
   ['Student Number'].agg([list, 'count'])
)
 
输出:
                                list  count
Subject section                            
a       1        [15, 10, 3, 18, 17]      5
        2                [14, 16, 4]      3
b       1           [3, 2, 5, 8, 17]      5
        2                   [13, 10]      2
c       1        [11, 18, 2, 12, 16]      5
        2                 [17, 0, 4]      3
d       1               [16, 19, 11]      3
e       1         [16, 5, 4, 12, 15]      5
        2                       [19]      1
f       1          [18, 17, 3, 0, 1]      5
        2                [9, 14, 13]      3
 
回答来源:stackoverflow