我有几种矩阵:
A=np.array([[-4, -1, -3] ,[1, -4,5],[ 3,4,3],[-5, -1,2]])
b = np.array([[-1], [4],[-4],[-2]])
x=np.array([[ 0.58732799],[-1.19370936],[-0.22879177]])
我想计算残差,r = Ax-b
r=A@x-b
print(r)
[[ 0.53077272]
[ 0.21820656]
[ 0.30077121]
[-0.20051414]]
如果我遵循r的范数,则会得到:
print(np.linalg.norm(r))
0.678235
如果我在numpy中执行相同的操作,则会得到不同的答案:
x,residuals,rank,sigma=np.linalg.lstsq(A,b,rcond=None);
print("Vector x:\n " + repr(x))
print(residuals)
Vector x:
array([[ 0.58732799],
[-1.19370936],
[-0.22879177]])
[0.46000302]
即,残差不相同。有人知道为什么吗?
问题来源:stackoverflow
https://docs.scipy.org/doc/numpy/reference/generation/numpy.linalg.lstsq.html 说:
残渣: 残渣之和;平方欧几里德2-范数
它是您在第一个示例中计算的平方。
>>> 0.678235 * 0.678235
0.460002715225
回答来源:stackoverflow
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。