开发者社区> 问答> 正文

反向传播算法(BP算法)的推导及其Python实现

反向传播算法(BP算法)的推导及其Python实现
如何调整一个神经网络的参数,也就是误差反向传播算法(BP算法)。以得到一个能够根据输入,预测正确输出的模型。

展开
收起
珍宝珠 2019-11-26 18:06:18 2476 0
1 条回答
写回答
取消 提交回答
  • #coding=utf-8
    import numpy as np
    import matplotlib.pylab as plt
    import random
      
    class NeuralNetwork(object):
        def __init__(self, sizes, act, act_derivative, cost_derivative):
            #sizes表示神经网络各层的神经元个数,第一层为输入层,最后一层为输出层
            #act为神经元的激活函数
            #act_derivative为激活函数的导数
            #cost_derivative为损失函数的导数
            self.num_layers = len(sizes)
            self.sizes = sizes
            self.biases = [np.random.randn(nueron_num, 1) for nueron_num in sizes[1:]]
            self.weights = [np.random.randn(next_layer_nueron_num, nueron_num)
                for nueron_num, next_layer_nueron_num in zip(sizes[:-1], sizes[1:])]
            self.act=act
            self.act_derivative=act_derivative
            self.cost_derivative=cost_derivative
      
        #前向反馈(正向传播)
        def feedforward(self, a):
            #逐层计算神经元的激活值,公式(4)
            for b, w in zip(self.biases, self.weights):
                a = self.act(np.dot(w, a)+b)
            return a
      
        #随机梯度下降算法
        def SGD(self, training_data, epochs, batch_size, learning_rate):
            #将训练样本training_data随机分为若干个长度为batch_size的batch
            #使用各个batch的数据不断调整参数,学习率为learning_rate
            #迭代epochs次
            n = len(training_data)
            for j in range(epochs):
                random.shuffle(training_data)
                batches = [training_data[k:k+batch_size] for k in range(0, n, batch_size)]
                for batch in batches:
                    self.update_batch(batch, learning_rate)
                print("Epoch {0} complete".format(j))
      
        def update_batch(self, batch, learning_rate):
            #根据一个batch中的训练样本,调整各个参数值
            nabla_b = [np.zeros(b.shape) for b in self.biases]
            nabla_w = [np.zeros(w.shape) for w in self.weights]
            for x, y in batch:
                delta_nabla_b, delta_nabla_w = self.backprop(x, y)
                nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
                nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
            #计算梯度,并调整各个参数值
            self.weights = [w-(learning_rate/len(batch))*nw for w, nw in zip(self.weights, nabla_w)]
            self.biases = [b-(learning_rate/len(batch))*nb for b, nb in zip(self.biases, nabla_b)]
      
        #反向传播
        def backprop(self, x, y):
            #保存b和w的偏导数值
            nabla_b = [np.zeros(b.shape) for b in self.biases]
            nabla_w = [np.zeros(w.shape) for w in self.weights]
            #正向传播
            activation = x
            #保存每一层神经元的激活值
            activations = [x]
            #保存每一层神经元的z值
            zs = []
            for b, w in zip(self.biases, self.weights):
                z = np.dot(w, activation)+b
                zs.append(z)
                activation = self.act(z)
                activations.append(activation)
            #反向传播得到各个参数的偏导数值
            #公式(13)
            d = self.cost_derivative(activations[-1], y) * self.act_derivative(zs[-1])
            #公式(17)
            nabla_b[-1] = d
            #公式(14)
            nabla_w[-1] = np.dot(d, activations[-2].transpose())
            #反向逐层计算
            for l in range(2, self.num_layers):
                z = zs[-l]
                sp = self.act_derivative(z)
                #公式(36),反向逐层求参数偏导
                d = np.dot(self.weights[-l+1].transpose(), d) * sp
                #公式(38)
                nabla_b[-l] = d
                #公式(37)
                nabla_w[-l] = np.dot(d, activations[-l-1].transpose())
            return (nabla_b, nabla_w)
      
    #距离函数的偏导数
    def distance_derivative(output_activations, y):
        #损失函数的偏导数
        return 2*(output_activations-y)
      
    # sigmoid函数
    def sigmoid(z):
        return 1.0/(1.0+np.exp(-z))
      
    # sigmoid函数的导数
    def sigmoid_derivative(z):
        return sigmoid(z)*(1-sigmoid(z))
      
    if __name__ == "__main__":
        #创建一个5层的全连接神经网络,每层的神经元个数为1,8,5,3,1
        #其中第一层为输入层,最后一层为输出层
        network=NeuralNetwork([1,8,5,3,1],sigmoid,sigmoid_derivative,distance_derivative)
      
        #训练集样本
        x = np.array([np.linspace(-7, 7, 200)]).T
        #训练集结果,由于使用了sigmoid作为激活函数,需保证其结果落在(0,1)区间内
        y = (np.cos(x)+1)/2
      
        #使用随机梯度下降算法(SGD)对模型进行训练
        #迭代5000次;每次随机抽取40个样本作为一个batch;学习率设为0.1
        training_data=[(np.array([x_value]),np.array([y_value])) for x_value,y_value in zip(x,y)]
        network.SGD(training_data,5000,40,0.1)
      
        #测试集样本
        x_test = np.array([np.linspace(-9, 9, 120)])
        #测试集结果
        y_predict = network.feedforward(x_test)
      
        #图示对比训练集和测试集数据
        plt.plot(x,y,'r',x_test.T,y_predict.T,'*')
        plt.show()
    
    2019-11-26 18:07:28
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
数据+算法定义新世界 立即下载
袋鼠云基于实时计算的反黄牛算法 立即下载
Alink:基于Apache Flink的算法平台 立即下载