开发者社区> 问答> 正文

MaxCompute用户指南:MapReduce:示例程序:WordCount示例



测试准备


  1. 准备好测试程序的 Jar 包,假设名字为 mapreduce-examples.jar,本地存放路径为 data\resources。

  2. 准备好 WordCount 测试表和资源。

    • 创建测试表。create table wc_in (key string, value string);
    • create table wc_out(key string, cnt bigint);

  • 添加测试资源
    1. add jar data\resources\mapreduce-examples.jar -f;

    使用 tunnel 导入数据。
    1. tunnel upload data wc_in;

    导入 wc_in 表的数据文件 data 的内容,如下所示:
    1. hello,odps


    测试步骤


    在 odpscmd 中执行 WordCount,如下所示:
    1. jar -resources mapreduce-examples.jar -classpath data\resources\mapreduce-examples.jar
    2. com.aliyun.odps.mapred.open.example.WordCount wc_in wc_out


    预期结果


    作业成功结束后,输出表 wc_out 中的内容,如下所示:
    1. +------------+------------+
    2. | key        | cnt        |
    3. +------------+------------+
    4. | hello      | 1          |
    5. | odps       | 1          |
    6. +------------+------------+


    代码示例

    1.     package com.aliyun.odps.mapred.open.example;
    2.     import java.io.IOException;
    3.     import java.util.Iterator;
    4.     import com.aliyun.odps.data.Record;
    5.     import com.aliyun.odps.data.TableInfo;
    6.     import com.aliyun.odps.mapred.JobClient;
    7.     import com.aliyun.odps.mapred.MapperBase;
    8.     import com.aliyun.odps.mapred.ReducerBase;
    9.     import com.aliyun.odps.mapred.TaskContext;
    10.     import com.aliyun.odps.mapred.conf.JobConf;
    11.     import com.aliyun.odps.mapred.utils.InputUtils;
    12.     import com.aliyun.odps.mapred.utils.OutputUtils;
    13.     import com.aliyun.odps.mapred.utils.SchemaUtils;
    14.     public class WordCount {
    15.       public static class TokenizerMapper extends MapperBase {
    16.         private Record word;
    17.         private Record one;
    18.         @Override
    19.         public void setup(TaskContext context) throws IOException {
    20.           word = context.createMapOutputKeyRecord();
    21.           one = context.createMapOutputValueRecord();
    22.           one.set(new Object[] { 1L });
    23.           System.out.println("TaskID:" + context.getTaskID().toString());
    24.         }
    25.         @Override
    26.         public void map(long recordNum, Record record, TaskContext context)
    27.             throws IOException {
    28.           for (int i = 0; i < record.getColumnCount(); i++) {
    29.             word.set(new Object[] { record.get(i).toString() });
    30.             context.write(word, one);
    31.           }
    32.         }
    33.       }
    34.       /**
    35.        * A combiner class that combines map output by sum them.
    36.        **/
    37.       public static class SumCombiner extends ReducerBase {
    38.         private Record count;
    39.         @Override
    40.         public void setup(TaskContext context) throws IOException {
    41.           count = context.createMapOutputValueRecord();
    42.         }
    43.         @Override
    44.         public void reduce(Record key, Iterator<Record> values, TaskContext context)
    45.             throws IOException {
    46.           long c = 0;
    47.           while (values.hasNext()) {
    48.             Record val = values.next();
    49.             c += (Long) val.get(0);
    50.           }
    51.           count.set(0, c);
    52.           context.write(key, count);
    53.         }
    54.       }
    55.       /**
    56.        * A reducer class that just emits the sum of the input values.
    57.        **/
    58.       public static class SumReducer extends ReducerBase {
    59.         private Record result = null;
    60.         @Override
    61.         public void setup(TaskContext context) throws IOException {
    62.           result = context.createOutputRecord();
    63.         }
    64.         @Override
    65.         public void reduce(Record key, Iterator<Record> values, TaskContext context)
    66.             throws IOException {
    67.           long count = 0;
    68.           while (values.hasNext()) {
    69.             Record val = values.next();
    70.             count += (Long) val.get(0);
    71.           }
    72.           result.set(0, key.get(0));
    73.           result.set(1, count);
    74.           context.write(result);
    75.         }
    76.       }
    77.       public static void main(String[] args) throws Exception {
    78.         if (args.length != 2) {
    79.           System.err.println("Usage: WordCount <in_table> <out_table>");
    80.           System.exit(2);
    81.         }
    82.         JobConf job = new JobConf();
    83.         job.setMapperClass(TokenizerMapper.class);
    84.         job.setCombinerClass(SumCombiner.class);
    85.         job.setReducerClass(SumReducer.class);
    86.         job.setMapOutputKeySchema(SchemaUtils.fromString("word:string"));
    87.         job.setMapOutputValueSchema(SchemaUtils.fromString("count:bigint"));
    88.         InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
    89.         OutputUtils.addTable(TableInfo.builder().tableName(args[1]).build(), job);
    90.         JobClient.runJob(job);
    91.       }
    92.     }
  • 展开
    收起
    行者武松 2017-10-23 17:43:34 1897 0
    0 条回答
    写回答
    取消 提交回答
    问答排行榜
    最热
    最新

    相关电子书

    更多
    Data+AI时代大数据平台应该如何建设 立即下载
    大数据AI一体化的解读 立即下载
    极氪大数据 Serverless 应用实践 立即下载