在 Pig 中使用 OSS
在使用 OSS 路径的时候,请使用类似如下的形式
oss://${AccessKeyId}:${AccessKeySecret}@${bucket}.${endpoint}/${path}
参数说明:
${accessKeyId}:您账号的 AccessKeyId。
${accessKeySecret}:该 AccessKeyId 对应的密钥。
${bucket}: 该 AccessKeyId 对应的 bucket。
${endpoint}:访问 OSS 使用的网络,由您集群所在的 region 决定,对应的 OSS也需要是在集群对应的 region。
${path}:bucket 中的路径。
具体的值请参考
OSS Endpoint
以 Pig 中带的 script1-hadoop.pig 为例进行说明,将 Pig 中的
tutorial.jar和
excite.log.bz2上传到 OSS中,假设上传路径分别为oss://emr/jars/tutorial.jar和oss://emr/data/excite.log.bz2。
请参见如下操作步骤:
- 编写脚本。将脚本中的 jar 文件路径和输入输出路径做了修改,如下所示。注意 OSS 路径设置形式为oss://${accesskeyId}:${accessKeySecret}@${bucket}.${endpoint}/object/path。
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- -- Query Phrase Popularity (Hadoop cluster)
- -- This script processes a search query log file from the Excite search engine and finds search phrases that occur with particular high frequency during certain times of the day.
- -- Register the tutorial JAR file so that the included UDFs can be called in the script.
- REGISTER oss://${AccessKeyId}:${AccessKeySecret}@${bucket}.${endpoint}/data/tutorial.jar;
- -- Use the PigStorage function to load the excite log file into the ▒raw▒ bag as an array of records.
- -- Input: (user,time,query)
- raw = LOAD 'oss://${AccessKeyId}:${AccessKeySecret}@${bucket}.${endpoint}/data/excite.log.bz2' USING PigStorage('\t') AS (user, time, query);
- -- Call the NonURLDetector UDF to remove records if the query field is empty or a URL.
- clean1 = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);
- -- Call the ToLower UDF to change the query field to lowercase.
- clean2 = FOREACH clean1 GENERATE user, time, org.apache.pig.tutorial.ToLower(query) as query;
- -- Because the log file only contains queries for a single day, we are only interested in the hour.
- -- The excite query log timestamp format is YYMMDDHHMMSS.
- -- Call the ExtractHour UDF to extract the hour (HH) from the time field.
- houred = FOREACH clean2 GENERATE user, org.apache.pig.tutorial.ExtractHour(time) as hour, query;
- -- Call the NGramGenerator UDF to compose the n-grams of the query.
- ngramed1 = FOREACH houred GENERATE user, hour, flatten(org.apache.pig.tutorial.NGramGenerator(query)) as ngram;
- -- Use the DISTINCT command to get the unique n-grams for all records.
- ngramed2 = DISTINCT ngramed1;
- -- Use the GROUP command to group records by n-gram and hour.
- hour_frequency1 = GROUP ngramed2 BY (ngram, hour);
- -- Use the COUNT function to get the count (occurrences) of each n-gram.
- hour_frequency2 = FOREACH hour_frequency1 GENERATE flatten($0), COUNT($1) as count;
- -- Use the GROUP command to group records by n-gram only.
- -- Each group now corresponds to a distinct n-gram and has the count for each hour.
- uniq_frequency1 = GROUP hour_frequency2 BY group::ngram;
- -- For each group, identify the hour in which this n-gram is used with a particularly high frequency.
- -- Call the ScoreGenerator UDF to calculate a "popularity" score for the n-gram.
- uniq_frequency2 = FOREACH uniq_frequency1 GENERATE flatten($0), flatten(org.apache.pig.tutorial.ScoreGenerator($1));
- -- Use the FOREACH-GENERATE command to assign names to the fields.
- uniq_frequency3 = FOREACH uniq_frequency2 GENERATE $1 as hour, $0 as ngram, $2 as score, $3 as count, $4 as mean;
- -- Use the FILTER command to move all records with a score less than or equal to 2.0.
- filtered_uniq_frequency = FILTER uniq_frequency3 BY score > 2.0;
- -- Use the ORDER command to sort the remaining records by hour and score.
- ordered_uniq_frequency = ORDER filtered_uniq_frequency BY hour, score;
- -- Use the PigStorage function to store the results.
- -- Output: (hour, n-gram, score, count, average_counts_among_all_hours)
- STORE ordered_uniq_frequency INTO 'oss://${AccessKeyId}:${AccessKeySecret}@${bucket}.${endpoint}/data/script1-hadoop-results' USING PigStorage();
创建作业。将步骤 1 中编写的脚本存放到 OSS 上,假设存储路径为oss://emr/jars/script1-hadoop.pig,在 E-MapReduce 作业中创建如下作业:
创建执行计划并运行。在 E-MapReduce 执行计划中创建执行计划,将上一步创建好的 Pig 作业添加到执行计划中,策略请选择“立即执行”,这样script1-hadoop 作业就会在选定集群中运行起来了。