开发者社区 问答 正文

如何将提取的特征传递给keras模型?

我从csv文件中提取了一系列图像的功能以及它们的标签

data = pandas.read_csv("data.csv", delimiter=',', dtype=str)
for index, row in data.iterrows():

img = image.load_img(row['image_path'], target_size=(img_width, img_height))
trainImage = image.img_to_array(img)
trainImage = np.expand_dims(trainImage, axis=0)

如何在上述循环中保存trainImages并trainLabels进入相应的数组以传递给模型

trainLabels = np_utils.to_categorical(trainLabels, num_classes)
model.fit(trainImages, trainLabels, nb_epoch=3, batch_size=16)

展开
收起
一码平川MACHEL 2019-01-22 11:52:30 2522 分享 版权
1 条回答
写回答
取消 提交回答
  • create lists to hold data

    X_train, y_train = [], []

    while looping add feature vector and labels to X_train, y_train resp.

    X_train.append(trainImage)
    y_train.append(trainLabel)

    convert y_train to categorical

    pass to model

    2019-07-17 23:26:14
    赞同 展开评论
问答分类:
问答地址: