1行Python代码,合并100个Excel文件,竟然这么方便?!

简介: 真的实现了。

封面.jpg

大家好,这里是程序员晚枫。

❤先说一个好消息,python-office自动化办公的官网上线了,点击直达👉https://www.python-office.com

今天开源项目python-office发布了一个新功能:

1行代码,合并你指定的多个Excel文件。

本文给大家详细介绍一下~

需求说明

有一位老师,现在有全校1年级12个班级所有同学,一共12个成绩单Excel文件,现在老师想把它们合并到一个文件:一年级.xlsx里,每个班级作为一个单独的sheet存放。如图所示,

结果图.jpg

这里大可放心,哪怕每个表的格式、内容不同,也完全可以无损合并。这里用班级成绩合并举例,只是为了大家更好的理解。

1行代码实现

下面我们用一行代码,实现上面这个功能。

安装python-office这个库

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple python-office -U

1行代码

# 导入这个库:python-office,简写为office
import office

#1行代码,验证是否绑定成功
office.excel.merge2excel(dir_path=r'C:\程序员晚枫\excel-merge\excel',output_file='test.xlsx')

#参数作用:
# dir_path = 文件夹的位置,建议把需要合并的多个excel文件放到同一个文件夹里。
# output_file = 最终合并的excel文件放在哪里、叫什么名字,可以不填,默认是:merge2excel.xlsx

直接运行以上代码,就可以得到一个合并后的excel文件啦~

快去试试吧~

如果有我没说清楚的,或者在使用过程中有问题,欢迎大家在评论区和我交流~
相关文章
|
4月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
691 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
22天前
|
数据采集 机器学习/深度学习 编解码
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。
111 5
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
|
1月前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
130 14
从零开始200行python代码实现LLM
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
120 11
200行python代码实现从Bigram模型到LLM
|
2月前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
105 1
把Postman调试脚本秒变Python采集代码的三大技巧
|
2月前
|
人工智能 算法 安全
使用CodeBuddy实现批量转换PPT、Excel、Word为PDF文件工具
通过 CodeBuddy 实现本地批量转换工具,让复杂的文档处理需求转化为 “需求描述→代码生成→一键运行” 的极简流程,真正实现 “技术为效率服务” 的目标。感兴趣的快来体验下把
101 10
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
113 2
|
2月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
85 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
2月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
429 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
26天前
|
NoSQL MongoDB 开发者
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
61 0

热门文章

最新文章

推荐镜像

更多