上一篇《Lambda表达式,让你爱不释手》 ,只是简单的讲到Lambda表达式的语法、使用,使得你对它产生了好感,而Lambda表达式是如何实现、定义,你可能不太清楚。本篇将会详细介绍 函数式接口 ,让你在使用JDK新特性时,做到心中有数,自信满满。
一、函数式接口
函数式接口( functional Interface
), 有且仅有一个抽象方法的接口 ,但可以有多个非抽象的方法。
适用于Lambda表达式使用的接口。如创建线程:
newThread(() ->System.out.println(Thread.currentThread().getName())).start();
其中,Lambda表达式代替了 new Runnable()
,这里的 Runable
接口就属于函数式接口,最直观的体现是使用了
@FunctionalInterface
注解,而且使用了一个抽象方法(有且仅有一个),如下:
packagejava.lang; /*** The <code>Runnable</code> interface should be implemented by any* class whose instances are intended to be executed by a thread. The* class must define a method of no arguments called <code>run</code>.* <p>* This interface is designed to provide a common protocol for objects that* wish to execute code while they are active. For example,* <code>Runnable</code> is implemented by class <code>Thread</code>.* Being active simply means that a thread has been started and has not* yet been stopped.* <p>* In addition, <code>Runnable</code> provides the means for a class to be* active while not subclassing <code>Thread</code>. A class that implements* <code>Runnable</code> can run without subclassing <code>Thread</code>* by instantiating a <code>Thread</code> instance and passing itself in* as the target. In most cases, the <code>Runnable</code> interface should* be used if you are only planning to override the <code>run()</code>* method and no other <code>Thread</code> methods.* This is important because classes should not be subclassed* unless the programmer intends on modifying or enhancing the fundamental* behavior of the class.** @author Arthur van Hoff* @see java.lang.Thread* @see java.util.concurrent.Callable* @since JDK1.0*/publicinterfaceRunnable { /*** When an object implementing interface <code>Runnable</code> is used* to create a thread, starting the thread causes the object's* <code>run</code> method to be called in that separately executing* thread.* <p>* The general contract of the method <code>run</code> is that it may* take any action whatsoever.** @see java.lang.Thread#run()*/publicabstractvoidrun(); }
1. 格式
修饰符 interface 接口名 {
public abstract 返回值类型 方法名 (可选参数列表);
}
- 注:
public abstract
可以省略(因为默认修饰为public abstract
)
如:
publicinterfaceMyFunctionalInterface { publicabstractvoidmethod(); }
2. 注解@FunctionalInterface
@FunctionalInterface
,是JDK1.8中新引入的一个注解,专门指代函数式接口,用于一个接口的定义上。
和 @Override
注解的作用类似, @FunctionalInterface
注解可以用来检测接口是否是函数式接口。如果是函数式接口,则编译成功,否则编译失败(接口中没有抽象方法或者抽象方法的个数多余1个)。
packagecom.xcbeyond.study.jdk8.functional; /*** 函数式接口* @Auther: xcbeyond* @Date: 2020/5/17 0017 0:26*/publicinterfaceMyFunctionalInterface { publicabstractvoidmethod(); // 如果存在多个抽象方法,则编译失败,即:@FunctionalInterface飘红// public abstract void method1();}
3. 实例
函数式接口:
packagecom.xcbeyond.study.jdk8.functional; /*** 函数式接口* @Auther: xcbeyond* @Date: 2020/5/17 0017 0:26*/publicinterfaceMyFunctionalInterface { publicabstractvoidmethod(); // 如果存在多个抽象方法,则编译失败,即:@FunctionalInterface飘红// public abstract void method1();}
测试:
packagecom.xcbeyond.study.jdk8.functional; /*** 测试函数式接口* @Auther: xcbeyond* @Date: 2020/5/17 0017 0:47*/publicclassMyFunctionalInterfaceTest { publicstaticvoidmain(String[] args) { // 调用show方法,参数中有函数式接口MyFunctionalInterface,所以可以使用Lambda表达式,来完成接口的实现show("hello xcbeyond!", msg->System.out.printf(msg)); } /*** 定义一个方法,参数使用函数式接口MyFunctionalInterface* @param myFunctionalInterface*/publicstaticvoidshow(Stringmessage, MyFunctionalInterfacemyFunctionalInterface) { myFunctionalInterface.method(message); } }
函数式接口,用起来是不是更加的灵活,可以在具体调用处进行接口的实现。
函数式接口,可以很友好地支持Lambda表达式。
二、常用的函数式接口
在JDK1.8之前已经有了大量的函数式接口,最熟悉的就是 java.lang.Runnable
接口了。
JDK 1.8 之前已有的函数式接口:
java.lang.Runnable
java.util.concurrent.Callable
java.security.PrivilegedAction
java.util.Comparator
java.io.FileFilter
java.nio.file.PathMatcher
java.lang.reflect.InvocationHandler
java.beans.PropertyChangeListener
java.awt.event.ActionListener
javax.swing.event.ChangeListener
而在JDK1.8新增了 java.util.function
包下的很多函数式接口,用来支持Java的函数式编程,从而丰富了Lambda表达式的使用场景。
这里主要介绍四大核心函数式接口:
java.util.function.Consumer
:消费型接口java.util.function.Supplier
:供给型接口java.util.function.Predicate
:断定型接口java.util.function.Function
:函数型接口
1. Consumer接口
java.util.function.Consumer
接口,是一个消费型的接口,消费数据类型由泛型决定。
packagejava.util.function; importjava.util.Objects; /*** Represents an operation that accepts a single input argument and returns no* result. Unlike most other functional interfaces, {@code Consumer} is expected* to operate via side-effects.** <p>This is a <a href="package-summary.html">functional interface</a>* whose functional method is {@link #accept(Object)}.** @param <T> the type of the input to the operation** @since 1.8*/publicinterfaceConsumer<T> { /*** Performs this operation on the given argument.** @param t the input argument*/voidaccept(Tt); /*** Returns a composed {@code Consumer} that performs, in sequence, this* operation followed by the {@code after} operation. If performing either* operation throws an exception, it is relayed to the caller of the* composed operation. If performing this operation throws an exception,* the {@code after} operation will not be performed.** @param after the operation to perform after this operation* @return a composed {@code Consumer} that performs in sequence this* operation followed by the {@code after} operation* @throws NullPointerException if {@code after} is null*/defaultConsumer<T>andThen(Consumer<?superT>after) { Objects.requireNonNull(after); return (Tt) -> { accept(t); after.accept(t); }; } }
(1)抽象方法:accept
Consumer
接口中的抽象方法 void accept(T t)
,用于消费一个指定泛型T的数据。
举例如下:
/*** 测试void accept(T t)*/publicvoidacceptMethodTest() { acceptMethod("xcbeyond", message-> { // 完成字符串的处理,即:通过Consumer接口的accept方法进行对应数据类型(泛型)的消费Stringreverse=newStringBuffer(message).reverse().toString(); System.out.printf(reverse); }); } /*** 定义一个方法,用于消费message字符串* @param message* @param consumer*/publicvoidacceptMethod(Stringmessage, Consumer<String>consumer) { consumer.accept(message); }
(2)方法:andThen
方法 andThen
,可以用来将多个 Consumer
接口连接到一起,完成数据消费。
/*** Returns a composed {@code Consumer} that performs, in sequence, this* operation followed by the {@code after} operation. If performing either* operation throws an exception, it is relayed to the caller of the* composed operation. If performing this operation throws an exception,* the {@code after} operation will not be performed.** @param after the operation to perform after this operation* @return a composed {@code Consumer} that performs in sequence this* operation followed by the {@code after} operation* @throws NullPointerException if {@code after} is null*/defaultConsumer<T>andThen(Consumer<?superT>after) { Objects.requireNonNull(after); return (Tt) -> { accept(t); after.accept(t); }; }
举例如下:
/*** 测试Consumer<T> andThen(Consumer<? super T> after)* 输出结果:* XCBEYOND* xcbeyond*/publicvoidandThenMethodTest() { andThenMethod("XCbeyond", t-> { // 转换为大小输出System.out.println(t.toUpperCase()); }, t-> { // 转换为小写输出System.out.println(t.toLowerCase()); }); } /*** 定义一个方法,将两个Consumer接口连接到一起,进行消费* @param message* @param consumer1* @param consumer2*/publicvoidandThenMethod(Stringmessage, Consumer<String>consumer1, Consumer<String>consumer2) { consumer1.andThen(consumer2).accept(message); }
2. Supplier接口
java.util.function.Supplier
接口,是一个供给型接口,即:生产型接口。只包含一个无参方法: T get()
,用来获取一个泛型参数指定类型的数据。
packagejava.util.function; /*** Represents a supplier of results.** <p>There is no requirement that a new or distinct result be returned each* time the supplier is invoked.** <p>This is a <a href="package-summary.html">functional interface</a>* whose functional method is {@link #get()}.** @param <T> the type of results supplied by this supplier** @since 1.8*/publicinterfaceSupplier<T> { /*** Gets a result.** @return a result*/Tget(); }
举例如下:
publicvoidtest() { Stringstr=getMethod(() ->"hello world!"); System.out.println(str); } publicStringgetMethod(Supplier<String>supplier) { returnsupplier.get(); }
3. Predicate接口
java.util.function.Predicate
接口,是一个断定型接口,用于对指定类型的数据进行判断,从而得到一个判断结果( boolean
类型的值)。
packagejava.util.function; importjava.util.Objects; /*** Represents a predicate (boolean-valued function) of one argument.** <p>This is a <a href="package-summary.html">functional interface</a>* whose functional method is {@link #test(Object)}.** @param <T> the type of the input to the predicate** @since 1.8*/publicinterfacePredicate<T> { /*** Evaluates this predicate on the given argument.** @param t the input argument* @return {@code true} if the input argument matches the predicate,* otherwise {@code false}*/booleantest(Tt); /*** Returns a composed predicate that represents a short-circuiting logical* AND of this predicate and another. When evaluating the composed* predicate, if this predicate is {@code false}, then the {@code other}* predicate is not evaluated.** <p>Any exceptions thrown during evaluation of either predicate are relayed* to the caller; if evaluation of this predicate throws an exception, the* {@code other} predicate will not be evaluated.** @param other a predicate that will be logically-ANDed with this* predicate* @return a composed predicate that represents the short-circuiting logical* AND of this predicate and the {@code other} predicate* @throws NullPointerException if other is null*/defaultPredicate<T>and(Predicate<?superT>other) { Objects.requireNonNull(other); return (t) ->test(t) &&other.test(t); } /*** Returns a predicate that represents the logical negation of this* predicate.** @return a predicate that represents the logical negation of this* predicate*/defaultPredicate<T>negate() { return (t) ->!test(t); } /*** Returns a composed predicate that represents a short-circuiting logical* OR of this predicate and another. When evaluating the composed* predicate, if this predicate is {@code true}, then the {@code other}* predicate is not evaluated.** <p>Any exceptions thrown during evaluation of either predicate are relayed* to the caller; if evaluation of this predicate throws an exception, the* {@code other} predicate will not be evaluated.** @param other a predicate that will be logically-ORed with this* predicate* @return a composed predicate that represents the short-circuiting logical* OR of this predicate and the {@code other} predicate* @throws NullPointerException if other is null*/defaultPredicate<T>or(Predicate<?superT>other) { Objects.requireNonNull(other); return (t) ->test(t) ||other.test(t); } /*** Returns a predicate that tests if two arguments are equal according* to {@link Objects#equals(Object, Object)}.** @param <T> the type of arguments to the predicate* @param targetRef the object reference with which to compare for equality,* which may be {@code null}* @return a predicate that tests if two arguments are equal according* to {@link Objects#equals(Object, Object)}*/static<T>Predicate<T>isEqual(ObjecttargetRef) { return (null==targetRef) ?Objects::isNull : object->targetRef.equals(object); } }
(1)抽象方法:test
抽象方法 boolean test(T t)
,用于条件判断。
/*** Evaluates this predicate on the given argument.** @param t the input argument* @return {@code true} if the input argument matches the predicate,* otherwise {@code false}*/booleantest(Tt);
举例如下:
/*** 测试boolean test(T t);*/publicvoidtestMethodTest() { Stringstr="xcbey0nd"; booleanresult=testMethod(str, s->s.equals("xcbeyond")); System.out.println(result); } /*** 定义一个方法,用于字符串的判断。* @param str* @param predicate* @return*/publicbooleantestMethod(Stringstr, Predicatepredicate) { returnpredicate.test(str); }
(2)方法:and
方法 Predicate<T> and(Predicate<? super T> other)
,用于将两个 Predicate
进行逻辑”与“判断。
/*** Returns a composed predicate that represents a short-circuiting logical* AND of this predicate and another. When evaluating the composed* predicate, if this predicate is {@code false}, then the {@code other}* predicate is not evaluated.** <p>Any exceptions thrown during evaluation of either predicate are relayed* to the caller; if evaluation of this predicate throws an exception, the* {@code other} predicate will not be evaluated.** @param other a predicate that will be logically-ANDed with this* predicate* @return a composed predicate that represents the short-circuiting logical* AND of this predicate and the {@code other} predicate* @throws NullPointerException if other is null*/defaultPredicate<T>and(Predicate<?superT>other) { Objects.requireNonNull(other); return (t) ->test(t) &&other.test(t); }
(3)方法:negate
方法 Predicate<T> negate()
,用于取反判断。
/*** Returns a predicate that represents the logical negation of this* predicate.** @return a predicate that represents the logical negation of this* predicate*/defaultPredicate<T>negate() { return (t) ->!test(t); }
(4)方法:or
方法 Predicate<T> or(Predicate<? super T> other)
,用于两个Predicate的逻辑”或“判断。
/*** Returns a composed predicate that represents a short-circuiting logical* OR of this predicate and another. When evaluating the composed* predicate, if this predicate is {@code true}, then the {@code other}* predicate is not evaluated.** <p>Any exceptions thrown during evaluation of either predicate are relayed* to the caller; if evaluation of this predicate throws an exception, the* {@code other} predicate will not be evaluated.** @param other a predicate that will be logically-ORed with this* predicate* @return a composed predicate that represents the short-circuiting logical* OR of this predicate and the {@code other} predicate* @throws NullPointerException if other is null*/defaultPredicate<T>or(Predicate<?superT>other) { Objects.requireNonNull(other); return (t) ->test(t) ||other.test(t); }
4. Function接口
java.util.function.Function
接口,是一个函数型接口,用来根据一个类型的数据得到另外一个类型的数据。
packagejava.util.function; importjava.util.Objects; /*** Represents a function that accepts one argument and produces a result.** <p>This is a <a href="package-summary.html">functional interface</a>* whose functional method is {@link #apply(Object)}.** @param <T> the type of the input to the function* @param <R> the type of the result of the function** @since 1.8*/publicinterfaceFunction<T, R> { /*** Applies this function to the given argument.** @param t the function argument* @return the function result*/Rapply(Tt); /*** Returns a composed function that first applies the {@code before}* function to its input, and then applies this function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of input to the {@code before} function, and to the* composed function* @param before the function to apply before this function is applied* @return a composed function that first applies the {@code before}* function and then applies this function* @throws NullPointerException if before is null** @see #andThen(Function)*/default<V>Function<V, R>compose(Function<?superV, ?extendsT>before) { Objects.requireNonNull(before); return (Vv) ->apply(before.apply(v)); } /*** Returns a composed function that first applies this function to* its input, and then applies the {@code after} function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of output of the {@code after} function, and of the* composed function* @param after the function to apply after this function is applied* @return a composed function that first applies this function and then* applies the {@code after} function* @throws NullPointerException if after is null** @see #compose(Function)*/default<V>Function<T, V>andThen(Function<?superR, ?extendsV>after) { Objects.requireNonNull(after); return (Tt) ->after.apply(apply(t)); } /*** Returns a function that always returns its input argument.** @param <T> the type of the input and output objects to the function* @return a function that always returns its input argument*/static<T>Function<T, T>identity() { returnt->t; } }
(1)抽象方法:apply
抽象方法 R apply(T t)
,根据类型T的参数获取类型R的结果。
packagejava.util.function; importjava.util.Objects; /*** Represents a function that accepts one argument and produces a result.** <p>This is a <a href="package-summary.html">functional interface</a>* whose functional method is {@link #apply(Object)}.** @param <T> the type of the input to the function* @param <R> the type of the result of the function** @since 1.8*/publicinterfaceFunction<T, R> { /*** Applies this function to the given argument.** @param t the function argument* @return the function result*/Rapply(Tt); /*** Returns a composed function that first applies the {@code before}* function to its input, and then applies this function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of input to the {@code before} function, and to the* composed function* @param before the function to apply before this function is applied* @return a composed function that first applies the {@code before}* function and then applies this function* @throws NullPointerException if before is null** @see #andThen(Function)*/default<V>Function<V, R>compose(Function<?superV, ?extendsT>before) { Objects.requireNonNull(before); return (Vv) ->apply(before.apply(v)); } /*** Returns a composed function that first applies this function to* its input, and then applies the {@code after} function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of output of the {@code after} function, and of the* composed function* @param after the function to apply after this function is applied* @return a composed function that first applies this function and then* applies the {@code after} function* @throws NullPointerException if after is null** @see #compose(Function)*/default<V>Function<T, V>andThen(Function<?superR, ?extendsV>after) { Objects.requireNonNull(after); return (Tt) ->after.apply(apply(t)); } /*** Returns a function that always returns its input argument.** @param <T> the type of the input and output objects to the function* @return a function that always returns its input argument*/static<T>Function<T, T>identity() { returnt->t; } }
举例如下:
/*** 测试R apply(T t),完成字符串整数的转换*/publicvoidapplyMethodTest() { // 字符串类型的整数StringnumStr="123456"; Integernum=applyMethod(numStr, n->Integer.parseInt(n)); System.out.println(num); } publicIntegerapplyMethod(Stringstr, Function<String, Integer>function) { returnfunction.apply(str); }
(2)方法:compose
方法 <V> Function<V, R> compose(Function<? super V, ? extends T> before)
,获取 apply
的 function
。
/*** Returns a composed function that first applies the {@code before}* function to its input, and then applies this function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of input to the {@code before} function, and to the* composed function* @param before the function to apply before this function is applied* @return a composed function that first applies the {@code before}* function and then applies this function* @throws NullPointerException if before is null** @see #andThen(Function)*/default<V>Function<V, R>compose(Function<?superV, ?extendsT>before) { Objects.requireNonNull(before); return (Vv) ->apply(before.apply(v)); }
(3)方法:andThen
方法 <V> Function<T, V> andThen(Function<? super R, ? extends V> after)
,用来进行组合操作,即:”先做什么,再做什么“的场景。
/*** Returns a composed function that first applies this function to* its input, and then applies the {@code after} function to the result.* If evaluation of either function throws an exception, it is relayed to* the caller of the composed function.** @param <V> the type of output of the {@code after} function, and of the* composed function* @param after the function to apply after this function is applied* @return a composed function that first applies this function and then* applies the {@code after} function* @throws NullPointerException if after is null** @see #compose(Function)*/default<V>Function<T, V>andThen(Function<?superR, ?extendsV>after) { Objects.requireNonNull(after); return (Tt) ->after.apply(apply(t)); }
三、函数式编程
函数式编程并不是Java提出的新概念,它将计算机运算看作是函数的计算。 函数式编程最重要的基础是λ演算,而且λ演算的函数是可以接受函数当作输入(参数)和输出(返回值)的。
和指令式编程相比,函数式编程强调函数的计算比指令的执行重要。
和过程化编程相比,函数式编程里函数的计算可随时调用。
当然,Java大家都知道是面向对象的编程语言,一切都是基于对象的特性(抽象、封装、继承、多态)。在JDK1.8出现之前,我们关注的往往是某一对象应该具有什么样的属性,当然这也就是面向对象的核心——对数据进行抽象。但JDK1.8出现以后,这一点开始出现变化,似乎在某种场景下,更加关注某一类共有的行为(有点类似接口),这也就是JDK1.8提出函数式编程的目的。如下图所示,展示了面向对象编程到函数式编程的变化。
Lambda表达式就是更好的体现了函数式编程,而为了支持Lambda表达式,才有了函数式接口。
另外,为了在面对大型数据集合时,为了能够更加高效的开发,编写的代码更加易于维护,更加容易运行在多核CPU上,java在语言层面增加了Lambda表达式。在上一节中,我们已经知道Lambda表达式是多么的好用了 。
在JDK1.8中,函数式编程随处可见,在你使用过程中简直很爽,例如:Stream流。
函数式编程的优点,也很多,如下:
1. 代码简洁,开发快速
函数式编程大量使用函数,减少了代码的重复,因此程序比较短,开发速度较快。
2. 接近自然语言,易于理解
函数式编程的自由度很高,可以写出很接近自然语言的代码。
例如,两数只差,可以写成 (x, y) -> x – y
3. 更方便的代码管理
函数式编程不依赖、也不会改变外界的状态,只要给定输入参数,返回的结果必定相同。因此,每一个函数都可以被看做独立单元,很有利于进行单元测试(unit testing)和除错(debugging),以及模块化组合。
4. 易于"并发编程"
函数式编程不需要考虑"死锁",因为它不修改变量,所以根本不存在"锁"线程的问题。不必担心一个线程的数据,被另一个线程修改,所以可以很放心地把工作分摊到多个线程,部署"并发编程"。
5. 代码的热升级
函数式编程没有副作用,只要保证接口不变,内部实现是外部无关的。所以,可以在运行状态下直接升级代码,不需要重启,也不需要停机。
四、总结
在JDK1.8中,函数式接口/编程将会随处可见,也有有助于你更好的理解JDK1.8中的一些新特性。关于函数式接口,在接下来具体特性、用法中将会体现的淋漓尽致。
JDK1.8提出的函数式接口,你是否赞同呢?
参考资料:
- https://www.cnblogs.com/Dorae/p/7769868.html
- https://blog.csdn.net/stormkai/article/details/94364233
- https://baike.baidu.com/item/函数式编程