论文赏析[NAACL19]一个更好更快更强的序列标注成分句法分析器(一)

简介: 一个更好更快更强的序列标注成分句法分析器

介绍


这篇论文主要是在之前的那篇论文

Constituent Parsing as Sequence Labelinggodweiyang.com

基础上解决了如下三个问题:

  • 太长的短语预测错误率高。
  • 输出空间太大导致label稀疏性。
  • 贪心解码导致的错误传播。

本文提出的解决方法分别是:

  • 采用融合了相对编码和绝对编码的动态编码。
  • 将预测任务分解为多个子任务。
  • 采用辅助任务和策略梯度。

三大问题以及解决方法


过长短语预测的高错误率


由下面这张图可以看出,当 image.png 太小时,准确率就会大幅下降。这个问题主要体现在过长短语的闭合上,右括号的预测尤其困难。其实这也跟数据稀疏性有很大关系,训练集中过长短语毕竟占少数。

image.png

解决方法就是采用动态编码,如下图所示:

image.png

第一行是相对值编码,第二行是绝对值编码,之前文章都已经解释过了。第三行是结合了上面两种编码的动态编码,具体取值情况是大多数时候都还采用相对值编码,因为毕竟相对值编码空间比较小,可以适当缓解数据稀疏性。但是当满足如下两种情况的时候,就采用绝对值编码:

  • 绝对值 image.png ,也就是说CA的个数不能超过3个,这样也是为了降低数据的稀疏性。
  • 相对值 image.png ,也就是说将上图中准确率比较低的那些负数值全部用绝对值替代了,在句法树中表现为 image.png 所在的子树比 image.png 低两层以上。

输出空间太大导致label稀疏性


这个问题主要是由于三元组 image.png 太稀疏了导致的。假设 image.png ,那么这个三元组的状态空间是 image.png ,可以通过将三元组分解为三个不同的子任务将复杂度降低为 image.png 。最后的损失函数定义为三个子任务的损失之和:

image.png

具体实现上,可以将任务 U 的输出给任务 N 和 C 作为输入。

贪心解码导致的错误传播


这个问题在基于贪心的方法中基本都存在,也就是所谓的一步错步步错,这里主要提出了两种解决方法。

辅助任务 辅助任务主要就是用来帮助主任务学习到一些不太容易学到的信息。这里才用了两个辅助任务,一个是在预测 image.png 的同时再预测一个 image.png ,这样就能往后多预测一步,适当的减少了贪心的影响。另一个方法就是将之前博客写到的句法距离(syntactic distances)加入到模型中一起预测:

image.png

对于不同的辅助任务,最后将他们的损失求和加到最终的损失函数中去:

image.png

策略梯度 这个方法可以从全局的角度来对模型进行优化。假设模型在 t 时刻的状态为 image.png ,输出标签为 image.png ,那么模型选择 image.png 的概率定义为策略 image.png ,模型最终可以获得的奖励为 image.png ,定义为句法树的F1值。

定义句法树的概率为每一步决策的概率之积:

image.png

所以模型最终就是要最大化如下的奖励:

image.png

按照梯度上升的方向更新参数 image.png ,求梯度可得:

image.png

image.png 代入可得:

image.png

其中 image.png 是根据分布 p 采样出来的 n 棵句法树的奖励。

具体实现的时候有好几个小Tips。

第一个就是要将奖励减去一个baseline,这里定义为模型直接根据贪心求得的句法树的F1值:

image.png

这么做的目的就是为了让奖励有正有负,不然全部都是正数的话,因为采样不可能全部采样到,可能会导致高概率的样本概率越来越高,而没有采样到的低概率样本可能奖励非常高,却因此概率越来越低。

第二个Tip就是加入熵作为正则项:

image.png

目的就是使概率尽量不要太小,不然的话采样数不够的话就有可能造成采样不到小概率的样本。

还有就是给策略加入噪声:

image.png

目的同样是加大概率,防止概率太接近于0,当然这个可加可不加。。。

相关文章
|
机器学习/深度学习 计算机视觉
清华大学提出LiVT,用视觉Transformer学习长尾数据,解决不平衡标注数据不在话下
清华大学提出LiVT,用视觉Transformer学习长尾数据,解决不平衡标注数据不在话下
151 0
|
机器学习/深度学习 自然语言处理 算法
CVPR 2022 | 大幅减少零样本学习所需的人工标注,马普所和北邮提出富含视觉信息的类别语义嵌入
CVPR 2022 | 大幅减少零样本学习所需的人工标注,马普所和北邮提出富含视觉信息的类别语义嵌入
121 0
【论文写作分析】之四《基于ALBERT-TextCNN模型的多标签医疗文本分类方法》
【论文写作分析】之四《基于ALBERT-TextCNN模型的多标签医疗文本分类方法》
220 0
【论文写作分析】之四《基于ALBERT-TextCNN模型的多标签医疗文本分类方法》
|
机器学习/深度学习 算法
【论文写作分析】之五《融合类别特征扩展与N-gram子词过滤的fastText短文本分类》
【论文写作分析】之五《融合类别特征扩展与N-gram子词过滤的fastText短文本分类》
【论文写作分析】之五《融合类别特征扩展与N-gram子词过滤的fastText短文本分类》
|
机器学习/深度学习
【论文写作分析】之六《基于WordVec和改进注意力机制AlexNet-2的文本分类方法》
【论文写作分析】之六《基于WordVec和改进注意力机制AlexNet-2的文本分类方法》
122 0
【论文写作分析】之六《基于WordVec和改进注意力机制AlexNet-2的文本分类方法》
|
机器学习/深度学习 算法 自动驾驶
CVPR2021快报!目标检测和语义分割论文分类汇总 | 源码 |
在语义分割中,对广泛使用的域自适应基准数据集进行了广泛的实验和消融研究。通过对标记的Synscapes和GTA5数据集以及未标记的Cityscapes训练集进行训练,我们提出的方法在Cityscapes的验证集上达到了59.0%的mIoU。它明显优于所有以前的最新的单源和多源无监督域自适应方法。
CVPR2021快报!目标检测和语义分割论文分类汇总 | 源码 |
|
机器学习/深度学习 自然语言处理
|
机器学习/深度学习 自然语言处理
论文赏析[EMNLP19]如何在Transformer中融入句法树信息?这里给出了一种解决方案(一)
之前其实有很多工作将句法信息融入到了RNN中,例如ON-LSTM和PRPN,用来隐式建模句法结构信息,同时提升语言模型的准确率。本文尝试将句法信息融入到Transformer中,用来赋予attention更好的解释性。同时可以无监督的预测出句子的句法树,并且相比于一般的Transformer,语言模型的性能有所提高。
182 0
论文赏析[EMNLP19]如何在Transformer中融入句法树信息?这里给出了一种解决方案(一)
|
机器学习/深度学习 自然语言处理 算法
论文赏析[EMNLP19]如何在Transformer中融入句法树信息?这里给出了一种解决方案(二)
之前其实有很多工作将句法信息融入到了RNN中,例如ON-LSTM和PRPN,用来隐式建模句法结构信息,同时提升语言模型的准确率。本文尝试将句法信息融入到Transformer中,用来赋予attention更好的解释性。同时可以无监督的预测出句子的句法树,并且相比于一般的Transformer,语言模型的性能有所提高。
268 0
论文赏析[EMNLP19]如何在Transformer中融入句法树信息?这里给出了一种解决方案(二)
|
机器学习/深度学习 自然语言处理 算法
论文赏析[NAACL19]基于DIORA的无监督隐式句法树归纳(二)
今天要分享的这篇论文来自NAACL2019,主要利用inside-outside算法推理出给定句子的句法树,不需要任何的监督,也不需要下游任务作为目标函数,只需要masked语言模型就行了。
463 0
论文赏析[NAACL19]基于DIORA的无监督隐式句法树归纳(二)
下一篇
无影云桌面