Python开发基础总结(八)GC+代码错误检查+运行+性能+其他

简介: Python开发基础总结(八)GC+代码错误检查+运行+性能+其他

一、GC


1、OO中的垃圾回收:Python的垃圾回收使用的是符号引用计数。那么,如果在一个函数中申请一个对象,然后返回它的一个属性或者方法,这个时候对象的符号引用已经去掉,对象是否会释放?

class child(parent):
    def __init__(self):
        self.i = 8888
    def foo(self):
        print('-----------------------')
    def __del__(self):
        print('now in del child')
        super(child, self).__del__()
复制代码

第一种情况,返回的是属性

def refun():
    o = child()
    return o.i
I = refun()
复制代码

这个时候,对象o会马上释放。因为o.i其实就是一个对象的引用,和o没有关系

第二种情况,返回的是方法

def refun():
    o = child()
    return o.foo
foo = refun()
复制代码

这个时候,对象o要等到foo释放的时候再释放,因为foo中包含了o的引用(foo的入参self)

2、如果两个对象交叉引用,是否会自动回收?不会。同样,如果一个对象把生成的对象赋值给它自身的一个属性,那么它也不会自动回收。

二、代码错误检查


1、今天遇到两个问题:

(a)类中方法:class _registerEvent(notifyEvent): def _sendRegRsp(self, voiceres, reqId, result, reason,status):,调用时参数个数少一个:self._sendRegRsp(voiceres, reqId, 'success', 'normal')   。结果是没有任何提示,并且,不知道调用了什么函数。这个问题有点匪夷所思。后面好好查看一下。

(b)抽取函数后,有时忘了返回值,当时却用到了返回值:

def createWirelessSdp(voiceRtpPort, voiceTbcpPort):
    voicesdp = SIP_SDP()
    voicesdp.a_use = 1
sdp = createWirelessSdp(1000,2000)
复制代码

结果也是没有任何提示,sdp为None。

2、总结:写Python代码,需要使用代码检查工具,比如,pylint等。后面引进一下。

三、关于运行


如何获取命令行参数:

import sys
print(sys.argv[1])
复制代码

sys.argv[1]就是第一个参数。0是脚本的名称。

四、关于性能


1、timeit:可以统计程序的运行时间。目前没有时间,抽时间好好看看。

timeit(cut1, number=10000):cut1是函数名,number是执行次数。

2、pypy可以将Python代码翻译为可执行程序,它的效率可以提高4倍左右。但是,内存的占用可能会很大。(没有试过。)

五、其他


1、脚本语言的进程名称显示为:python ,如果一个服务器上有多个进程,那么将不易发现那个进程是哪个程序。可以使用第三方开源的库来解决这个问题:setproctitle.

from setproctitle import setproctitle,getproctitle
print('当前的进程名:%s' % getproctitle())
setproctitle('proctitle')
print('设置后的的进程名:%s' % getproctitle())
复制代码

2、with语法:with open(‘file’, ‘r’) as f:

code

可以是try的另一种形式。

        可以执行with操作的类型:

file
decimal.Context
thread.LockType
threading.Lock
threading.RLock
threading.Condition
threading.Semaphore
threading.BoundedSemaphore
复制代码

3、产生随机数:random.randint(100000, 999999)

4、回调函数的使用:设置回调函数的时候,很多时候要使用闭包。避免闭包的一个方法是:

def setCancelFun(cancelFun, *args, **kwargs):

   '''如果为None表示删除取消函数, 后面跟的是cancel函数的参数。这样可以避免上面创建闭包。'''  

global _cancelFun,_cancelArgs,_cancelKwargs
    _cancelFun = cancelFun
    _cancelArgs = args
    _cancelKwargs = kwargs
复制代码

def __execCancelFun():

   '执行取消操作。因为在throw和kill的时候会执行此函数,所以,暂时没有看到会在外面调用此函数。屏蔽后,接口的简单性会提高'

global _cancelFun,_cancelArgs,_cancelKwargs
    if callable(_cancelFun):
        _cancelFun(*_cancelArgs, **_cancelKwargs)
        _cancelFun = None#防止重复调用
def test(a, b, c):
    print('--------test:', a,b,c)
setCancelFun(test, 1, 2, 3)
__execCancelFun()
复制代码

也就是增加可变参数。


作者:zhulin1028

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章
|
12天前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
55 15
|
12天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
15天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
12天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
19 1
|
12天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
14天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
31 2
|
6天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
Python
python 检查端口存活状态
!/usr/bin/env python check lvs port import socket,sys host = '172.16.54.94' port = '9999' def conn(host,port): try: s = socket.
1345 0
|
12天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
11天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
下一篇
无影云桌面